跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖京桓
研究生(外文):Ching Huan Liao
論文名稱:應用於即時負載補償多階串疊式靜態同步補償器之發展
論文名稱(外文):Development of Multi-Level Cascade Static Synchronous Compensator for Real-Time Load Compensation
指導教授:張偉能
指導教授(外文):W. N. Chang
學位類別:博士
校院名稱:長庚大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:133
中文關鍵詞:靜態同步補償器負載補償全橋轉換器
外文關鍵詞:STATCOMload compensationfull H-bridge converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
指導教授推薦書
口試委員會審定書
誌謝………………………………………………………………………..iii
中文摘要…………………………………………….…………………….iv
英文摘要…………………………………………………………………...v
符號索引…………………………………………………………………..vi
目錄………………………………………………………………………..ix
圖目錄…………………………………………………………………….xii
表目錄…………………………………………………………………….xv
第一章 緒論
1.1背景與研究目的………………………………………………1
1.2文獻回顧………………………………………………………5
1.3章節概要………………………………………………………8
第二章 △接線STATCOM主電路架構與操作原理
2.1簡介……………………...………………..…………………...9
2.2 STATCOM與SVCs的操作特性…………………..…….....10
2.2.1靜態虛功補償器(SVCs)…………………………...….10
2.2.2靜態同步補償器(STATCOM)……………………...…12
2.3 STATCOM主電路架構……………………………………..14
2.3.1二極體箝位轉換器………………….………………...14
2.3.2飛輪電容轉換器………………….…………………...15
2.3.3多階串疊式FHB轉換器………………….……...…...16
2.3.4 Y或△接線方式比較分析............................................18
2.4多階串疊式STATCOM的運作原理……………………….19
2.4.1七階串疊式FHB轉換器操作原理…...........................20
2.4.2九階串疊式FHB轉換器操作原理...............................24
2.5 STATCOM數學模型 ..............................................................27
2.5.1單相STATCOM靜態數學模型....................................27
2.5.2電容器大小選擇............................................................31
2.5.3電抗器大小選擇............................................................31
2.6討論..........................................................................................32
第三章 負載補償策略
3.1簡介..........................................................................................33
3.2三相不平衡負載與落後功因的成因及影響..........................34
3.2.1三相不平衡現象定義....................................................34
3.2.2負載補償........................................................................35
3.2.3負載補償設備................................................................36
3.3負載補償策略分析..................................................................37
3.3.1負載補償策略(一).........................................................38
3.3.2負載補償策略(二).........................................................41
3.3.3負載補償策略(三).........................................................44
3.3.4 STATCOM負載補償示例.............................................44
3.4即時電力參數量測..................................................................46
3.5討論..........................................................................................49
第四章 負載補償模擬驗證與分析
4.1簡介..........................................................................................50
4.2 △接線STATCOM控制器架構設計.....................................51
4.3負載補償模擬驗證..................................................................53
4.3.1負載補償策略(一)模擬驗證.........................................53
4.3.2負載補償策略(二)模擬驗證.........................................62
4.3.3單相負載補償模擬驗證................................................70
4.3.4動態負載補償模擬驗證................................................75
4.3.5負載補償策略(三)模擬驗證.........................................80
4.4討論..........................................................................................84
第五章 STATCOM實測驗證與分析
5.1簡介..........................................................................................85
5.2實測系統規劃..........................................................................86
5.3 STATCOM硬體實測驗證......................................................88
5.3.1負載補償策略(一)實測驗證.........................................88
5.3.2負載補償策略(二)實測驗證.........................................93
5.3.3單相負載補償實測驗證................................................97
5.3.4負載補償策略(三)實測驗證 .......................................101
5.4討論........................................................................................105
第六章 結論與未來發展方向
6.1結論........................................................................................106
6.2未來發展方向........................................................................108

參考文獻………………………………………………………………...109
研究著作...................................................................................................115


圖目錄
圖2.2.1 TCR-TSC型SVC主電路架構.....................................................10
圖2.2.2 TCR-TSC型SVC的V-I操作特性曲線........................................11
圖2.2.3 STATCOM等效電路.....................................................................12
圖2.2.4 STATCOM的V-I操作特性曲線..................................................13
圖2.3.1五階二極體箝位轉換器................................................................14
圖2.3.2五階飛輪電容轉換器....................................................................15
圖2.3.3 Y接線七階串疊式FHB轉換器..................................................16
圖2.3.4 △接線七階串疊式FHB轉換器..................................................17
圖2.4.1多階串疊式STATCOM與系統連接配置...................................19
圖2.4.2 △接線STATCOM a-b臂七階串疊式FHB轉換器架構.............21
圖2.4.3 FHB轉換器四種操作模式...........................................................21
圖2.4.4 STATCOM a-b臂內電壓與電流..................................................22
圖2.4.5九階串疊式FHB轉換器架構的△接線STATCOM....................24
圖2.4.6 九階串疊式FHB轉換器a-b臂內電壓與電流.........................25
圖2.5.1七階串疊式STATCOM等效架構....................................................30
圖2.5.2 STATCOM數學模型與控制架構....................................................30
圖3.3.1三相三線配電系統與△接線STATCOM配置.............................38
圖3.3.2 STATCOM負載補償示例.............................................................45
圖3.4.1電力參數量測架構........................................................................47
圖3.4.2三點取樣示意……........................................................................47
圖4.2.1 △接線STATCOM控制器架構.......................................................51
圖4.2.2開關切換時序控制........................................................................52
圖4.3.1 STATCOM模擬系統架構.............................................................53
圖4.3.2負載補償響應................................................................................55
圖4.3.3 STATCOM補償響應.....................................................................57
圖4.3.4負載端與電源端功率響應............................................................58
圖4.3.5 STATCOM各臂功率與直流鏈電壓響應.....................................60
圖4.3.6負載端與電源端正、負相序電流分量響應..................................61
圖4.3.7負載補償響應................................................................................63
圖4.3.8 STATCOM補償響應…..………….……………………………..64
圖4.3.9負載端與電源端功率響應………………………………...….....65
圖4.3.10 STATCOM各臂功率與直流鏈電壓響應……………………...68
圖4.3.11負載端與電源端正、負相序電流分量響應…………................69
圖4.3.12負載補償響應…………..............................................................71
圖4.3.13 STATCOM補償響應…....……………………………………...72
圖4.3.14負載端與電源端功率響應………………………………...…...72
圖4.3.15 STATCOM各臂功率與直流鏈電壓響應…...………………....74
圖4.3.16動態負載補償模擬系統架構………..….…...………………....75
圖4.3.17感應機啟動,無STATCOM補償…………….................................76
圖4.3.18感應機啟動並以STATCOM補償…..………...............................78
圖4.3.19負載端與電源端功率響應………………………………...…...78
圖4.3.20感應機啟動補償比較………………….......….……………...…..79
圖4.3.21負載補償策略(三)模擬系統架構………….......….……………...80
圖4.3.22負載補償響應..............................................................................81
圖4.3.23 STATCOM補償響應…....……………………………………...82
圖4.3.24 STATCOM補償電流命令與直流鏈電壓響應…...……………83
圖5.2.1 △接線STATCOM硬體測試架構整體規劃………..........................87
圖5.2.2 △接線STATCOM硬體實測架構....................................................87
圖5.3.1實測負載補償響應........................................................................89
圖5.3.2實測STATCOM暫態響應.............................................................91
圖5.3.3實測負載端與電源端功率響應....................................................92
圖5.3.4實測負載補償響應........................................................................93
圖5.3.5實測STATCOM暫態響應.............................................................95
圖5.3.6實測STATCOM直流鏈電壓與補償命令.....................................96
圖5.3.7實測負載端與電源端功率響應....................................................97
圖5.3.8實測負載補償響應........................................................................98
圖5.3.9實測STATCOM補償響應.............................................................99
圖5.3.10實測STATCOM直流鏈電壓與補償命令.................................100
圖5.311實測負載端與電源端功率響應.................................................101
圖5.3.12實測負載補償響應....................................................................102
圖5.3.13實測STATCOM暫態響應.........................................................103
圖5.3.14實測STATCOM補償命令與直流鏈電壓.................................104


表目錄
表2.3.1三種典型多階轉換器比較分析....................................................17
表3.2.1 FACTS設備分類...........................................................................36
表3.3.1負載補償後之基頻三相電源、負載與STATCOM電流...............45
表4.3.1負載補償策略(一)模擬系統參數.................................................54
表4.3.2負載補償策略(一)的諧波分析.....................................................61
表4.3.3負載補償策略(二)模擬系統參數.................................................62
表4.3.4負載補償策略(二)的諧波分析.....................................................69
表4.3.5單相負載補償模擬系統參數........................................................70
表4.3.6單相負載補償的諧波分析............................................................74
表4.3.7動態負載補償模擬系統參數........................................................75
表4.3.8負載補償策略(三)模擬系統參數.................................................80
表4.3.9負載補償策略(三)的諧波分析.....................................................83
表5.3.1負載補償後之三相電源、負載與STATCOM電流......................92
表5.3.2負載補償後之三相電源、負載與STATCOM電流......................97
表5.3.3負載補償後之三相電源、負載與STATCOM電流.....................101
表5.3.4負載補償後之三相電源、負載與STATCOM電流.....................104

參考文獻
1. A. Ghosh, and G. Ledwich, “Load compensating DSTATCOM in weak AC systems,” IEEE Transactions on Power Delivery, vol. 18, no. 4, pp. 1302-1309, 2003.
2. T. S. Sidhu, R. K. Varma, P. K. Gangadharan, F. A. Albasri, and G. R. Ortiz, “Performance of distance relays on shunt-FACTS compensated transmission lines,” IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 1837-1845, 2005.
3. J. V. Milanović, and Y. Zhang, “Modeling of FACTS devices for voltage sag mitigation studies in large power systems,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3044-3052, 2010.
4. J. Wang, C. Fu, and Y. Zhang, “SVC control system based on instantaneous reactive power theory and fuzzy PID,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1658-1665, 2008.
5. M. S. El-Moursi, and A. M. Sharaf, “Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1985-1997, 2005.
6. H. Ambriz-Perez, E. Acha, and C. R. Fuerte-Esquivel, “Advanced SVC models for newton-raphson load flow and newton optimal power flow studies,” IEEE Transactions on Power Systems vol. 15, no. 1, pp. 129-136, 2000.
7. J. H. Chen, W. J. Lee, and M. S. Chen, “Using a static VAr compensator to balance a distribution system,” IEEE Transactions on Industry Applications, vol. 35, no. 2, pp. 298-304, 1999.
8. S. Y. Lee, C. J. Wu, and W. N. Chang, “A compact control algorithm for reactive power compensation and load balancing with static Var compensator,” Electric Power Systems Research, vol. 58, no. 2, pp. 63-70, 2001.
9. A. Ghosh and G. Ledwich, Power Quality Enhancement Using Custom Power Devices, Kluwer Academic Publishers, USA, 2002.
10. C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T. W. Cease, and A. Edris, “Development of a 100 MVAr static condenser for voltage control of transmission systems,” IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1486-1496, 1995.

11. B. Singh, R. Saha, A. Chandra, and K. Al-Haddad, “Static synchronous compensators (STATCOM): a review,” IET Power Electronics, vol. 2, no. 4, pp. 297-324, 2009.
12. S. A. Al-Mawsawi, “Comparing and evaluating the voltage regulation of a UPFC and STATCOM,” International Journal of Electrical Power & Energy Systems, vol. 25, no. 9, pp. 735-740, 2003.
13. B. Gultekin, and M. Ermis, “Cascaded multilevel converter-based transmission STATCOM: system design methodology and development of a 12 kV ±12 MVAr power stage,” IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 4930-4950, 2013.
14. B. Singh, P. Jayaprakash, and D. P. Kothari, “A T-connected transformer and three-leg VSC based DSTATCOM for power quality improvement,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2710-2718, 2008.
15. B. Singh, and J. Solanki, “Load compensation for diesel generator-based isolated generation system employing DSTATCOM,” IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 238-244, 2011.
16. M. K. Mishra, and K. Karthikeyan, “A fast-acting DC-link voltage controller for three-phase DSTATCOM to compensate AC and DC loads,” IEEE Transactions on Power Delivery, vol. 24, no. 4, pp. 2291-2299, 2009.
17. S. Iyer, A. Ghosh, and A. Joshi, “Inverter topologies for DSTATCOM applications—a simulation study,” Electric Power Systems Research, vol. 75, no. 2, pp. 161-170, 2005.
18. A. E. Leon, J. M. Mauricio, J. A. Solsona, and A. Gomez-Exposito, “Software sensor-based STATCOM control under unbalanced conditions,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1623-1632, 2009.
19. V. Dinavahi, R. Iravani, and R. Bonert, “Design of a real-time digital simulator for a D-STATCOM system,” IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1001-1008, 2004.
20. C. Yiqiang, B. Mwinyiwiwa, Z. Wolanski, and O. Boon-Teck, “Regulating and equalizing DC capacitance voltages in multilevel STATCOM,” IEEE Transactions on Power Delivery, vol. 12, no. 2, pp. 901-907, 1997.
21. S. Zeliang, D. Na, C. Jie, Z. Haifeng, and H. Xiaoqiong, “Multilevel SVPWM with DC-link capacitor voltage balancing control for diode-clamped multilevel converter based STATCOM,” IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 1884-1896, 2013.
22. B. Gultekin, C. O. Gercek, T. Atalik, M. Deniz, N. Bicer, M. Ermis, K. N. Kose, C. Ermis, E. Koc, I. Cadirci, A. Acik, Y. Akkaya, H. Toygar, and S. Bideci, “Design and implementation of a 154-kV ±50-Mvar transmission STATCOM based on 21-level cascaded multilevel converter,” IEEE Transactions on Industry Applications, vol. 48, no. 3, pp. 1030-1045, 2012.
23. F. Z. Peng, J. S. Lai, J. W. McKeever, and J. VanCoevering, “A multilevel voltage-source inverter with separate DC sources for static VAr generation,” IEEE Transactions on Industry Applications, vol. 32, no. 5, pp. 1130-1138, 1996.
24. J. S. Lai, and F. Z. Peng, “Multilevel converters-a new breed of power converters,” IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, 1996.
25. C. K. Lee, J. S. K. Leung, S. Y. R. Hui, and H. S. H. Chung, “Circuit-level comparison of STATCOM technologies,” IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 1084-1092, 2003.
26. T. Atalik, M. Deniz, E. Koc, C. O. Gercek, B. Gultekin, M. Ermis, and I. Cadirci, “Multi-DSP and -FPGA-based fully digital control system for cascaded multilevel converters used in FACTS applications,” IEEE Transactions on Industrial Informatics, vol. 8, no. 3, pp. 511-527, 2012.
27. L. Maharjan, S. Inoue, and H. Akagi, “A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration,” IEEE Transactions on Industry Applications, vol. 44, no. 5, pp. 1621-1630, 2008.
28. K. Sano, and M. Takasaki, “A transformerless D-STATCOM based on a multi-voltage cascade converter requiring no DC sources,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2783-2795, 2012.
29. J. I. Yutaka Ota, Y. Shibano, N. Niimura, and H. Akagi, “A phase-shifted-PWM D-STATCOM using a modular multilevel cascade converter (SSBC)—Part I: modeling, analysis, and design of current control,” IEEE Transactions on Industry Applications, vol. 51, pp. 279-288, 2015.
30. S. Qiang, and L. Wenhua, “Control of a cascade STATCOM with star configuration under unbalanced conditions,” IEEE Transactions on Power Electronics, vol. 24, no. 1, pp. 45-58, 2009.
31. F. Z. Peng and W. Jin, “A universal STATCOM with delta-connected cascade multilevel inverter,” Proceedings of Power Electronics Specialists Conference, vol. 5, pp. 3529-3533, 2004.
32. F. Z. Peng, Q. Wei, and C. Dong, “Recent advances in multilevel converter/inverter topologies and applications,” Proceedings of IPEC conference, pp. 492-501, 2010.
33. H. Akagi, “Classification, terminology, and application of the modular multilevel cascade converter (MMCC),” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3119-3130, 2011.
34. M. Hagiwara, R. Maeda, and H. Akagi, “Negative-sequence reactive-power control by a PWM STATCOM based on a modular multilevel cascade converter (MMCC-SDBC),” IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 720-729, 2012.
35. L. Gyugyi, R. A. Otto, and T. H. Putman, “Principles and applications of static, thyristor-controlled shunt compensators,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-97, no. 5, pp. 1935-1945, 1978.
36. T. J. E. Miller, Reactive Power Control in Electric System, John Wiley & Sons, New York, 1982.
37. W. N. Chang and C. H. Liao, “Development of multi-level cascaded DSTATCOM for real-time load balancing and power factor correction of three-phase power distribution system,” Journal of Technology, vol. 29, no. 1, pp. 69-78, 2014.
38. M. N. Slepchenkov, K. Smedley, and W. Jun, “Hexagram-converter-based STATCOM for voltage support in fixed-speed wind turbine generation systems,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1120-1131, 2011.
39. A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Transactions on Industry Applications, vol. IA-17, no. 5, pp. 518-523, 1981.
40. C. H. Ng, M. A. Parker, L. Ran, P. J. Tavner, J. R. Bumby, and E. Spooner, “A multilevel modular converter for a large, light weight wind turbine generator,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1062-1074, 2008.
41. L. M. Tolbert, F. Z. Peng, and T. G. Habetler, “Multilevel converters for large electric drives,” IEEE Transactions on Industry Applications, vol. 35, no. 1, pp. 36-44, 1999.
42. W. Song and A. Q. Huang, “Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 2700-2708, 2010.
43. R. Xu, Y. Yu, R. Yang, G. Wang, D. Xu, B. Li, and S. Sui, “A novel control method for transformerless H-bridge cascaded STATCOM with star configuration,” IEEE Transactions on Power Electronics, vol. 30, no. 3, pp. 1189-1202, 2015.
44. J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls, and applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, 2002.
45. Y. Liu, H. Hong, and A. Q. Huang, “Real-time calculation of switching angles minimizing THD for multilevel inverters with step modulation,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 285-293, 2009.
46. L. Yiqiao, and C. O. Nwankpa, “A new type of STATCOM based on cascading voltage-source inverters with phase-shifted unipolar SPWM,” IEEE Transactions on Industry Applications, vol. 35, no. 5, pp. 1118-1123, 1999.
47. A. Yazdani, H. Sepahvand, M. L. Crow, and M. Ferdowsi, “Fault detection and mitigation in multilevel converter STATCOMs,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1307-1315, 2011.
48. S. Du, J. Liu, J. Lin, and Y. He, “A novel DC voltage control method for STATCOM based on hybrid multilevel H-bridge converter,” IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 101-111, 2013.
49. H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous reactive power compensators comprising switching devices without energy storage components,” IEEE Transactions on Industry Applications, vol. IA-20, no. 3, pp. 625-630, 1984.
50. F. Z. Peng, and J. S. Lai, “Generalized instantaneous reactive power theory for three-phase power systems,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 1, pp. 293-297, 1996.
51. H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, John Wiley & Sons, USA, 2007.
52. B. Singh, and J. Solanki, “A comparison of control algorithms for DSTATCOM,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2738-2745, 2009.
53. F. Z. Peng, and J. S. Lai, “Dynamic performance and control of a static VAr generator using cascade multilevel inverters,” IEEE Transactions on Industry Applications, vol. 33, no. 3, pp. 748-755, 1997.
54. H. Akagi, S. Inoue, and T. Yoshii, “Control and performance of a transformerless cascade PWM STATCOM with star configuration,” IEEE Transactions on Industry Applications, vol. 43, no. 4, pp. 1041-1049, 2007.
55. Z. Liu, B. Liu, S. Duan, and Y. Kang, “A novel DC capacitor voltage balance control method for cascade multilevel STATCOM,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 14-27, 2012.
56. J. A. Barrena, L. Marroyo, M. A. R. Vidal, and J. R. T. Apraiz, “Individual voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 21-29, 2008.
57. 江榮城,電力品質,全華圖書,民國一百零一年。
58. 王博豊,應用於即時負載補償之九階串疊式靜態同步補償器設計與製作,長庚大學碩士論文,民國一百零二年。
59. 張智皓,多階串疊式靜態同步補償器在單相負載補償之應用,長庚大學碩士論文,民國一百零四年。
60. 吳佩寰,移相脈波寬度調變式靜態同步補償器之數學模型推導與應用,長庚大學碩士論文,民國一百零四年。
61. Arthur R. Bergen and Vijay Vittal, Power Systems Analysis, Prentice Hall, New Jersey, 2000.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊