跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.163) 您好!臺灣時間:2025/12/01 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉本鈞
研究生(外文):Pen-Chun Liu
論文名稱:內部為不含鹽類介質的電位分佈近似半解析解:平行平板、圓柱、與球
論文名稱(外文):Approximate Analytical Expressions for the Electrical Potential between Two Parallel Planes, Inside a Cylinder and a Inside a Sphere: Salt-free Medium
指導教授:徐治平徐治平引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:30
中文關鍵詞:電位不含鹽類介質半解析解
外文關鍵詞:Salt-freeAnalytical ExpressionsElectrical Potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中推導出在兩平面、圓柱以及球的內部為不含鹽類的介質系統下,膠體內部的空間電位分佈近似解析解;根據兩平面內部的空間電位分佈解析解,本論文使用變數變換的方法近似導出圓柱座標以及球座標的近似解析解。結果顯示近似條件所需要設定的距離,在幾何中心距離假想空間電位衰變至零的面超過100倍粒子徑長時誤差相當低。並且當表面電位較高的時候,近似解析解對於空間電位的分佈會有較好的描述,即和數值解的結果會有較少的誤差;而在表面電位較低的情況下,圓柱座標以及球座標的近似解可以乘上一個校正函數來修正,則可以有效的大幅降低誤差,更可以正確的描述膠體粒子內部的空間電位分佈。而在同樣的參數下,空間電位隨著距離膠體表面的距離增加而下降,而空間電位下降的速率依序平面座標>圓柱座標>球座標。而在反離子價數提升的狀況下,當有越大的反離子價數會得到越低的空間電位,而同樣空間的電位分佈隨距離表面的距離增加有更快速度的衰減。最後並導出有關固定表面電位和固定表面電荷密度在此方程式上的轉換式,並且可以應用邊界條件相關表面官能基解離的情況。
Approximation analytical expression for the potential of planar, cylindrical, and spherical surfaces are derived for the case when the inside medium contains counterions only. Based on the results for planar, those for two identical surfaces can be derived. The error of a surface on the electrical potential distribution can be neglected when the order of the distance which from center to the surface we assume the potential decay to zero about 102 of its radius. This effect also can be neglected when the potential is high, but it can be taken into account by multiplying a correction function to the potential of surface when the surface potential is low. For the same set of parameters, the magnitude of the degree of the potential decay for various type of surface follows the order planar surface>cylindrical surface>spherical surface.
Furthermore, the boundary condition exchange equation of constant surface potential change to constant charge density is derived for these equations. So it can be used with two types of boundary condition.
中文摘要…………………………………………………………………………………I
英文摘要………………………………………………………………………………...II
目錄………………………………………………………………………….…………III
圖目錄………………………………………………………………….……………….V
第一章 緒論………………………………………………………………...…………1
第二章 文獻回顧…………………………………………………...………………....3
2-1 電雙層理論………………………………………………...……………….....3
2-1.1波茲曼分佈……………………………………………………………..3
2-1.2 波松方程式…………………………………...………………………..4
2-1.3 波松—波茲曼方程式………………………...………………………..5
2-1.4 Debye-Hückel 理論………………………………………………….....6
2-1.5 單一電雙層的Gouy-Chapman 理論……...………………………......7
2-2電動力學現象……………………....……………………………………….....8
2-3 Modified Poission-Boltzmann equation….………………………………….....8
2-4 不含鹽類的膠體分散系統…………….….…………………………………..9
第三章 理論分析…………………………………………………………………..12
3-1 兩平板系統內部的電位分佈………………………………………………12
3-2 球座標內部的電位分佈………………...…………………………………13
3-3 圓柱座標內部的電位分佈……...…………………………………………...14
3-4 官能基解離的邊界條件…………..…………………………………………16
第四章 結果與討論………………………………………………………………17
4-1 F對於近似解誤差的修正性…………………………………………………17
4-2 a的大小對於膠體粒子內部電位分佈的影響…..………………………..…18
4-3 ys的大小對於膠體粒子內部電位分佈的影響………………………………18
4-4 ω對於膠體粒子內部電位分佈的影響.……………………………………...19
4-5 b對於膠體粒子內部電位分佈的影響…………….………………………...19
第五章 結論………………………………………………………………………..21
符號說明……………………………………………………………………………23
參考文獻……………………………………………………………………………26
附錄A…………………………………………………………………..………………47
附錄B……………………………………………………………..……………………49
附錄C……………………………………………………………………………..……51
(1)Hunter, R. J. Foundations of Colloid Science; Oxford University Press: New York, 1992; Vol. 1.
(2)Masliyah, J. H. Electrokinetic Transport Phenomena; AOSTRA Technical Publication, 1994.
(3)Hsu, J. P.; Kuo, Y. C. “Approximate analytical expressions for the properties of an electrical double layer with asymmetric electrolytes: Cylindrical and spherical geometries” J. Colloid Interface Sci. 1994, 167, 35.
(4)Ohshima, H. “Electrostatic interaction between a hard sphere with constant surface charge density and a soft sphere: Polarization effect of a hard sphere” J. Colloid Interface Sci. 1994, 168, 255.
(5)McCormack, D; Carnie, S. L.; Chan, D. Y. C. “Calculations of electric Double-Layer force and interaction free energy between dissimilar surfaces” J. Colloid Interface Sci. 1995, 169, 177.
(6)Hsu, J. P.; Tseng, M. T. “Electrical potential distribution for multiple charged surfaces under a general boundary condition” J. Colloid Interface Sci. 1996, 184, 289.
(7)Sader, J. E.; Lenhoff, A. M. “Electrical double-layer interaction between heterogeneously charged colloidal particles: A superposition formulation” J. Colloid Interface Sci. 1998, 201, 233.
(8)Hsu, J. P.; Liu, B. T. “Electrical interaction energy between two charged entities in an electrolyte solution” J. Colloid Interface Sci. 1999, 217, 219.
(9)Zholkovskij, E. K.; Dukhin, S. S.; Mishchuk, N. A.; Masliyah, J. H.; Czarnecki, J. “Poisson–Boltzmann equation for spherical cell model: Approximate analytical solution and applications” Colloids Surf. A 2001, 192, 235.
(10)Chen, Z.; Singh, R. K. “General solution for Poisson–Boltzmann equation in semiinfinite planar symmetry” J. Colloid Interface Sci. 2002, 245, 301.
(11)López-García, J. J.; Horno, J.; Grosse, C. “Numerical solution of the Poisson–Boltzmann equation for a spherical cavity” J. Colloid Interface Sci. 2002, 251, 85.
(12)Oyanader, M.; Arce, P. “A new and simpler approach for the solution of the electrostatic potential differential equation. Enhanced solution for planar, cylindrical and annular geometries” J. Colloid Interface Sci. 2005, 284, 315.
(13)Luo, G.; Liu, C.; Wang, H. P.; Hou, C; Jin, J. “Electrical properties of highly charged spherical surfaces in a symmetric electrolyte solution” J. Dispers. Sci. Technol. 2005, 26, 173.
(14)Petsev, D. N.; Lopez, G. P. “Electrostatic potential and electroosmotic flow in a cylindrical capillary filled with symmetric electrolyte: Analytic solutions in thin double layer approximation” J. Colloid Interface Sci. 2006, 294, 492.
(15)Tuinier, R. “Approximate solutions to the Poisson-Boltzmann equation in spherical and cylindrical geometry” J. Colloid Interface Sci. 2003, 258, 45.
(16)Lin, S. H.; Hsu, J. P.; Tseng, S.; Chen, C. J. “Analytical expressions for the electrical potential near planar, cylindrical, and spherical surfaces for symmetric electrolytes” J. Colloid Interface Sci. 2005, 281, 255.
(17)Birukhov, I.; Andelman, D.; Orland, H. “Steric effects in electrolytes: A modified Poisson-Boltzmann equation” Phys. Rev. Lett.1997, 79, 435.
(18)Birukhov, I.; Andelman, D.; Orland, H. “Adsorption of large ions from an electrolyte solution: A modified Poission-Boltzmann equation” Electrochimica Acta 2000, 46, 221.
(19)Hsu, J. P.; Jiang, J. M.; Tseng, S. “Estimation of the ionic distribution in a reverse micelle: Effect of ionic size” J. Phys. Chem. B 2003, 107, 14429.
(20)Hsu, J. P.; Tseng, S.; Jiang, J. M. “Derivation of analytical expressions for the electrical potential distribution in lipid structures” J. Phys. Chem. B 2005, 109, 8180.
(21)Korolev, N.; Lyubartsev, A. P.; Nordenskiöld, L. “Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions” Biophys. J. 1998, 75, 3041.
(22)Pfohl, T.; Li, Y.; Kim, J. H.; Wen, Z.; Wong, G. C. L.; Koltover, I.; Kim, M. W.; Safinya, C. R. “Biological polyelectrolyte complexes in solution and confined on patterned surfaces” Colloids Surf. A 2002, 198-202, 613.
(23)Elliott, G. F.; Hodson, S. A. “Cornea, and the swelling of polyelectrolyte gels of biological interest” Rep. Prog. Phys. 1998, 61, 1325.
(24)Regini, J. W.; Elliott, G. F. “The effect of temperature on the Donnan potentials in biological polyelectrolyte gels: Cornea and striated muscle” Int. J. Biol. Macromol. 2001, 28, 245.
(25)Nagvekar, M.; Tihminlioglu, F.; Danner, R. P. “Colligative properties of polyelectrolyte solutions” Fliud Phase Equilibria 1998, 145, 15.
(26)Manning, G. S. “Limiting laws and counterion condensation in polyelectrolyte solutions .I. colligative properties” J. Chem. Phys. 1969, 51, 924.
(27)Oosawa, F. Polyelectrolytes; Dekker: New York, 1971.
(28)Aswal, V. K.; Goyal, P. S. “Selective counterion condensation in ionic micellar solutions” Phys. Rev. E 2003, 67, 051401.
(29)Essafi, W.; Lafuma, F.; Baigl, D.; Williams, C. E. “Anomalous counterion condensation in salt-free hydrophobic polyelectrolyte solutions: Osmotic pressure measurements” Europhys. Lett. 2005, 71, 938.
(30)Groot, R. D. “Ion condensation on solid particles – Theory and simulations” J. Chem. Phys. 1991, 95, 9191.
(31)Golestanian, R. “Dynamics of counterion condensation” Europhys. Lett. 2000, 52, 47.
(32)Sens, P.; Joanny, J. F. “Counterion release and electrostatic adsorption” Phys. Rev. Lett. 2000, 84, 4862.
(33)Wang, T. Y.; Lee, T. R.; Sheng, Y. J.; Tsao, H. K. “Effective charges of polyelectrolytes in a salt-free solution based on counterion chemical potential” J. Phys. Chem. B 2005, 109, 22560.
(34)O’Shaughnessy, B.; Yang, Q. “Manning-Oosawa counterion condensation” Phys. Rev. Lett. 2005, 94, 048302.
(35)Holm, C.; Kekicheff, P.; Podgornik, R. In Electrostatic Effects in Soft Matter and Biophysics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Vol. 46, p.487.
(36)Barrat, J. L.; Joanny, J. F. “Theory of polyelectrolyte solutions” Adv. Chem. Phys. 1996, 94, 1.
(37)Takahashi, D.; Kubota, Y.; Kokai, K.; Izumi, T.; Hirata, M.; Kokufuta, E. “Effects of surface charge distribution of proteins in their complexation with polyelectrolytes in an aqueous salt-free system” Langmuir 2000, 16, 3133.
(38)Stevens, M. J.; Kremer, K. “The nature of flexible linear polyelectrolytes in salt-free solution – A Molecular-dynamics study” J. Chem. Phys. 1995, 103, 1669.
(39)Messina, R.; Holm, C.; Kremer, K. “Strong electrostatic interactions in spherical colloidal systems” Phys. Rev. E 2001, 64, 21405.
(40)Anta, J. A.; Lago, S. “Self-consistent effective interactions in charged colloidal suspensions” J. Chem. Phys. 2002, 116, 10514.
(41)Alfrey, T.; Berg, P. W.; Morawetz, H. “The counterion distribution in solutions of rod-shaped polyelectrolytes” J. Polym. Sci. 1951, 7, 543.
(42)Imai, N.; Oosawa, F. “Note on solutions of linear polyelectrolyte molecules” J. Chem. Phys. 1954, 22, 2084.
(43)Oosawa, F. Polyelectrolytes; Dekker: New York, 1971.
(44)Ohshima, H. “Surface charge density/surface potential relationship for a spherical colloidal particle in a salt-free medium” J. Colloid Interface Sci. 2002, 247, 18.
(45)Ohshima, H. “Potential distribution around a charged spherical colloidal particle in a medium containing its counterions and a small amount of added salts” J. Colloid Polym. Sci. 2004, 282, 1185.
(46)Ohshima, H. “Dynamic electrophoretic mobility of spherical colloidal particles in a salt-free medium” J. Colloid Interface Sci. 2003, 265, 422.
(47)Ohshima, H. “The role of particle size on the deposition efficiency of ink on plastic spheres” Colloids Surf. A 2003, 222, 207.
(48)Ohshima, H. “Electrophoresis of colloidal particles in a salt-free medium” Chem. Eng. Sci. 2006, 61, 2104.
(49)Ohshima, H. “Electrophoretic mobility of a soft particle in a salt-free medium” J. Colloid Interface Sci. 2004, 269, 255.
(50)Ohshima, H. Erratum to “Electrophoretic Mobility of a Soft Particle in a Salt-Free Medium”: [J. Colloid Interface Sci. 269 (2004) 255–258] J. Colloid Interface Sci. 2004, 272, 503.
(51)Ohshima, H. “Electroosmotic velocity in an array of parallel soft cylinders in a salt-free medium “Colloids Surf. B 2004, 38, 139.
(52)Ohshima, H. Electrostatic Interaction Between Ion-penetrable Membranes in a Salt-Free Medium J. Colloid Interface Sci. 2003, 260, 339.
(53)Ohshima, H. “Potential distribution around a polyelectrolyte-coated spherical particle in a salt-free medium” J. Colloid Interface Sci. 2003, 268, 429.
(54)Chiang, C. P.; Lee, E.; He, Y. Y.; Hsu, J. P. “Electrophoresis of a spherical dispersion of polyelectrolytes in a salt-free solution” J. Phys. Chem. B 2006, 110, 1490.
(55)Hsu, J. P.; Yu, S. Y.; Tseng, S. “Approximate analytical expressions for the electrical potential between two planar, cylindrical, and spherical surfaces” J. Phys. Chem. B 2006, 110, 25007.
(56)Griffiths, P.C.; Fallis, I.A.; Chuenpratoom, T.; Watanesk, R. “Metallosurfactants: Interfaces and micelles” Adv. in Colloid and Interface Sci. 2006, 122, 107
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top