跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瑩潔
研究生(外文):Ying-Chieh Huang
論文名稱:基因PKD1突變與超音波檢測用於診斷短毛貓多囊腎病的相關性
論文名稱(外文):Correlation between the PKD1 Gene Mutation and Ultrasonographic Examination in Diagnosis of Polycystic Kidney Disease in Domestic Short Hair Cat
指導教授:王孟亮王孟亮引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:94
中文關鍵詞:多囊腎病超音波短毛貓PKD1
外文關鍵詞:polycystic kidney diseasedomestic short hair catPKD1ultrasonography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

貓多囊腎病是貓最常見的遺傳性疾病,有極高的致死率,侵犯了全世界約36-49 %的波斯貓及波斯相關品種貓隻。多囊腎病的定義為出現在腎臟皮質及髓質各種不同大小充滿液體的囊腫,甚至是肝臟、胰臟及子宮都可以見到。貓PKD1 gene exon 29上的點突變,是造成貓多囊腎病的原因,這個點突變使得PKD1基因產生終止密碼子而無法製造出足夠的正常蛋白質,使得腎臟腎小管細胞異常的增生及凋亡而出現許多不正常的囊腫,並且這個嚴重的疾病有著自體顯性的遺傳模式。許多基因檢測方法被發展用來檢測這個重要的疾病。超音波是目前被廣泛用於診斷多囊腎病的工具,可以見到患貓腎臟中無或低回音性、圓形或卵圓形、與周圍腎臟組織界限分明的囊腫影像。然而,目前大部分與這個疾病相關的文獻不論是影像學或是基因檢測方面,都著重在波斯與波斯相關品種的貓,之前我們實驗室調查的結果發現不但這個疾病在波斯貓有高盛行率,而且短毛品種的貓也有相當大的風險得到這個疾病。在本研究中,我們隨機收集了2008年9月至2010年4月到中興大學獸醫教學醫院就診的短毛品種貓隻,同時進行超音波學檢查並採血後萃取核&;#33527;酸,針對其PKD1基因exon 29進行點突變偵測,並且定序之後與正常序列比對,同時我們也試著從毛囊中抽取DNA,與血液來源的DNA進行交叉比對。在這個研究當中,我們一共收集了179隻以短毛貓為主的樣本進行分析,另外也將所收集到的樣本與本實驗室學姊之前所收集到的111隻以波斯貓為主的樣本合併進行統計分析。這290隻貓主要包含了短毛家貓(43.4%)、波斯貓(32.4%)、金吉拉(10%)、美國短毛貓(5.9%)和其他品種的貓(8.3%)。所有收集到的樣本都進行基因檢測,同時其中的132隻貓針對多囊腎病進行超音波檢測。結果顯示,以超音波及基因檢測多囊腎病在短毛貓的盛行率分別為12%和4%。以超音波檢查診斷為多囊腎病的貓隻在種別、診斷年齡、性別及腎臟指數都與未受侵犯的貓隻沒有顯著相關性,而以基因檢測帶有點突變的卻與性別、品種及被毛長短有顯著相關性,結果顯示雄性、波斯相關品種的貓和長毛貓有較高的風險罹患多囊腎病。與之前本實驗室所調查的結果不同的,短毛家貓患有多囊腎病的機率和其他短毛品種一樣,並沒有特別高,這顯示了之前的調查結果可能有採樣的偏差。其中三隻經過超音波檢查診斷為多囊腎病的貓,其PKD1基因檢測的結果卻正常,這個結果顯示就如同人類一樣,可能有其他基因(點)突變會造成多囊腎病。並且,所有利用PKD1基因檢測出帶有點突變的貓中,只有一隻作了詳細的超音波檢查卻沒有觀察到腎臟囊腫。推究其原因可能該貓只有三歲,囊腫的發展較慢,以致於小到超音波無法觀察到,或許我們可以利用人類的「Two-hit假說」來解釋這個有趣的現象,可能是由於基因、飲食或環境的因素使得該貓的囊腫發展較慢甚至不產生囊腫。由於採集毛髮進行DNA萃取來診斷PKD具有快速、方便、任何年齡均可施行等優點,加上PKD在波斯相關品種貓隻的高盛行率是不容忽視的,故採集毛髮進行基因檢測並同時施行超音波檢查,才能確實掌控疾病的發展並給予適當的治療,並能有效降低未來貓多囊腎病的盛行率。



Abstract

Feline autosomal dominant polycystic kidney disease (PKD), an inherited disorder characterized by the development of renal cysts, is the most prevalent and potentially lethal monogenic disorder in cats. It affected 37-49% Persian and Persian-related cats worldwide. Recently, a CaA transversion resulting in a stop mutation has been identified in PKD affected cats and several gene tests had been established to indentify this point mutation. However, to date prevalent studies both in medical imaging and gene screening of this lethal disease are mainly focus on long-hair breed cats. Previous study of our laboratory revealed that not only Persian but also other domestic short-hair (DSH) breeds had a risk of developing PKD. In this study, we collected domestic short-hair cat admitted to the Veterinary Medicine Teaching Hospital of NCHU from September 2008 to April 2010. Ultrasonographic (USG) examination of kidneys of cats was performed. In addition, polymerase chain reaction (PCR) was used to amplify the PKD1 gene exon 29 of genomic DNA extracted from blood or hair follicle of cats, and sequences of PCR products were further identified by direct sequencing. The prevalence of PKD in short hair cats was investigated. In this study, we collected 179 cats mostly consisting of domestic shorthair cats, combined with 111 cats mostly consisting of Persian and Persian related breed collected by Hsin-Yu Chen. Totally 290 cats were analyzed mostly consisting of domestic shorthair (43.4%), Persian (32.4%), Chinchilla (10%), and American Shorthair (5.9%), and other species (8.3%). All cats were examined by genetic test; among them only 132 cats were screened by ultrasound. The results showed the prevalence of PKD affected domestic shorthair cats diagnosed by USG and gene testing were 12% and 4% respectively. There was no correlation in breeds, age of diagnosis, sex, renal index between the PKD affected cats diagnosed by USG and unaffected cats. However, cats with the PKD1 gene point mutation detected by gene testing related to gender, breed, and the length of hair of cats with significant difference. The male cats, long hair cats and Persian-related breeds have higher risk to PKD than female cats. There were 3 PKD affected cats diagnosed by ultrasound were absent of PKD1 point mutation. The results suggested other mutations may contribute to feline PKD. Moreover, there was only one cat with the PKD1 gene point mutation and didn’t show any cyst in ultrasonography. Perhaps we could explain this result through the “Two-Hit Hypothesis” in human. Other causes such as gene, food intake, and environment may alter the progression of this lethal disease. In conclusion, a paired use of ultrasound and genetic tests should be recommended in order to reach a complete medical condition of cats.


目次

中文摘要 ........................................................................................................................i
英文摘要 .......................................................................................................................ii
目次 ..............................................................................................................................iii
表次 ………………..………………………………………………………………..viii
圖次 ............................................................................................................................. ix
第一章 序言 …………………………………………………………………….…….1
第二章 文獻探討 ……………………………………………………………….…….2
第一節 人類之腎臟囊性疾病 …………………………………………….……...2
一、遺傳性多囊性腎臟異常……………………………………….………2
(一)自體顯性多囊腎病……………………………………………………3
( 1)ADPKD的流行病學及病因學調查………………………………...3
( 2)ADPKD的臨床表現………………………………………………...4
(3)ADPKD的病理學研究……………………………………………...4
(4)ADPKD的診斷……………………………………………………...5
(5)ADPKD與其他腎臟囊腫之區別診斷……………………………...6
a. 單一囊腫…………………………………………………………...6
b. 後天囊性腎病(Acquired cystic kidney disease, ACKD)…………6
c. 結節性硬化症 (Tuberous sclerosis)……………………………...6
d. 自體隱性多囊腎病 (Autosomal recessive polycystic kidney
disease, ARPKD)………………………………………………….7
(二)自體隱性多囊腎病……………………………………………………7
(1)ARPKD的流行病學及病因學調查…………………………………7
(2)ARPKD的臨床表現…………………………………………………7
(3)ARPKD的病理學研究………………………………………………8
(4)ARPKD的診斷………………………………………………………8
(三)囊腫形成的理論:Two-hit model……………………………………..9
(四)與PKD有關的蛋白質………………………………………………...9
(1)Polycystin-1(PC1)………………...………………………………...9
(2)Polycystin-2(PC2)…………………………………………………10
( 3)Fibrosystin / polyductin……………………………………………10
(五)PKDs在細胞學及分子層面的致病機轉……………………………11
(1)囊腫的增生、細胞凋亡(apoptosis)和液體累積…………………11
(2)細胞與細胞及細胞與基質間不當的附著…………………………12
(3) PKD可視為一種纖毛病變(ciliopathy)…………………………13
1. 初級纖毛(primary cilia)的結構…………………………………..13
2. 初級纖毛的功能…………………………………………………...14
a. Mechanosensor…………………………………………………14
b. 細胞週期的調控(Cell cylcle regulator).......…………………15
3. PKD中訊息傳導途徑的受損……………………………………...16
a. cAMP活化路徑(cAMP-activated pathways)……………….16
b. 血管加壓素(vasopressin)……………………………………17
c. cAMP…………………………………………………………...17
d. Wnt(Wg和Int基因的合併縮寫)的信號傳導(Wnt signaling in PKD)…………………………………………………………...17
e. PCs調控mTOR(mammalian target of rapamycin)複合體….18
(六)PKDs造成腎衰竭的機制……………………………………………20
(七)ADPKD的治療……………………………………………………...20
(1)傳統療法……………………………………………………………..20
(2)對症療法……………………………………………………………..21
1. 疼痛控制…………………………………………………………...21
2. 腎臟感染…………………………………………………………...21
3. 高血壓和左心室肥厚……………………………………………...21
4. 動脈瘤(arterial aneurysms)……………………………………….22
5. 腎結石(nephrolithiasis)…………………………………………..22
6. 血尿(hematuria)…………………………………………………..22
(3)腎取代性療法………………………………………………………..23
1. 透析………………………………………………………………...23
2. 腎臟移植…………………………………………………………...23
(4)特異性療法………………………………………………………….23
1. 表皮生長因子受器(epithlial growth factor receptor, EGFR)酪胺
酸激酶抑制劑(tyrosine kinase inhibitors)………………………23
2. 抑制細胞凋亡……………………………………………………...24
3. 調節cAMP的訊息傳導…………………………………………...24
4. mTOR的抑制………………………………………………………24
5. Cyclin-dependent kinase(CDK)的抑制…………………………..24
6. 刺激PC2調節的鈣離子釋放……………………………………...25
(八)ADPKD的預後…………………………..………………………….25
(九)ADPKD的預防……………………………………………………...25
二、後天囊性腎臟疾病(acquired cystic kidney disease, ACKD)…………...25
﹙一﹚ ACKD的流行病學及病因學調查…………………………………25
﹙二﹚ACKD的病理學研究…………………………………………….26
﹙三﹚ACKD的診斷………………………………………………………26
﹙四﹚ACKD的治療………………………………………………………26
三、腎臟髓質的囊性疾病……………………………………………………..26
(一)腎臟髓質囊腫疾病(medullary cystic disease, MCD)……………...27
(1)MCD的病因學研究………………………………………………..27
(2)MCD的病理學研究………..………………………………………27
(3)MCD的診斷………………………..………………………………27
(4)MCD的治療………………………………..………………………28
1.針對鹽的消耗……………………………………………………….28
2.針對貧血…………………………………………………………….28
(二)髓質海綿腎(medullary sponge kidney, MSK)……………………..28
(1)MSK的病因學及流行病學…………………………………………28
(2)MSK的病理學研究…………………………………………………28
(3)MSK的診斷…………………………………………………………29
(4)MSK的治療…………………………………………………………29
四、單純性囊腫(simple cysts)……………………………………………...…29
(一)單純性囊腫的病因學及流行病學……………………………..……29
(二)單純性囊腫的病理學研究…………………………………………..30
(三)單純性囊腫的診斷…………………………………………………..30
(四)單純性囊腫的治療………………………………………………..…30
第二節 貓之多囊腎病……………………………………………………………31
一、貓PKD的流行病學研究………………………………………………31
二、貓之多囊腎病的病因學研究…………………………………………32
三、貓之多囊腎病的臨床表現……………………………………………33
四、貓之多囊腎病的病理學研究…………………………………………35
(一)囊腫外觀及分佈……………………………………………………..35
(二)上皮細胞增生………………………………………………………..36
(三)Na / K ATPase的異位……………………………………………….36
(四)腎臟外的器官病變………………………………………………..…36
五、貓之多囊腎病的診斷……………………………………………………..…36
(一)超音波檢查…………………………………………………………….36
(二)電腦斷層掃描(Computer Tomography, CT)………………...………37
(三)基因檢測技術………………..……………………………………..…38
六、PKD的治療………………………………………………………………….38
(一)慢性腎衰竭之治療(Treatment of Chronic Renal Failure,
CRF)…………………………………………………………………..38
(1)傳統療法……………………………………………………………..…39
1. 利尿劑………………………………………………………………...39
2. 離子不平衡的矯正……………………………………………...……39
3. 酸鹼不平衡的控制……………………………………………...……39
(2)腎取代性治療………………………………………………………..…40
1. 腹膜透析………………………………………………………...……40
2. 血液透析……………………………………………………...………40
3. 腎臟移植……………………………………………………...………40
(3)飲食療法……………………………………………………………………41
七、多囊腎病造成之腎衰竭的預後評估………………………………………41
八、多囊腎病的移除………………………………………………………..……41
第三章 材料與方法………………………………………………………………..…42
第一節 貓隻多囊腎病之樣本收集………………………………………....……42
第二節 超音波檢測………………………………………………………………42
第三節 DNA萃取…………………………………………………………..……42
一、血液的DNA萃取………………………………………………..……42
二、毛髮的DNA萃取……………………………………………..………43
第四節 聚合酶鍊鎖反應(Polymerase Chain Reaction,PCR)…………..………43
一、PCR引子的設計………………………………………………………43
二、PCR反應………………………………………………………………44
第五節 巢式聚合酶鍊鎖反應(Nested PCR)……………………………………44
一、Nested PCR引子的設計………………………………………...……44
二、Nested PCR反應………………………………………………………44
三、Nested PCR產物確認…………………….……………….…………44
四、Nested PCR產物定序……………………………………………...…45
第六節 統計分析…………………………………………………………...……45
第四章 結果……………………………………………………………………….…46
第一節 貓多囊腎病的流行病學調查………………………………………...…46
一、樣本之基本資料………………………………………………………46
二、PKD超音波檢查結果…………………………………………...……47
﹙一﹚PKD與品種之關係…………………………………………….……48
(二)PKD與被毛長短的關係………………………………….…………50
(三)PKD與性別的關係…………………………………………….……52
(四)PKD與年齡的關係…………………………………………….……52
(五)PKD與BUN、creatinine的關係……………………………..………55
(六)超音波檢查結果與其他變數以chi-square統計分析結果
之總結………………………………………………………………57
(七)單變數邏輯式迴歸分析…………………………………………..…57
三、PKD1的基因突變…………………………………………………….59
(一)聚合酶鍊反應………………………………………………………..59
(二)基因定序結果的判讀………………………………………….……59
(三)PKD1突變與品種的關係……………………………………...……61
(四)PKD1突變與被毛長短的關係………………………………...……65
(五)PKD1突變與性別的關係…………………………………………...66
(六)PKD1突變與BUN、creatinine的關係………………………………66
(七)PKD1突變與其他變數以chi-square統計分析結果
之總結………………………………………………………………68
(八)PKD1突變與超音波檢查結果的關係……………………………...70
(九)PKD1突變與其他變數的單變數logistic分析.......……………...…70
(十)帶有PKD1突變貓隻其年齡與腎臟指數的關係………………....70
(十一)PKD1基因檢測、超音波檢查結果與被毛長短
的關係……………………………………………………………71
(十二)毛髮萃取DNA和血液萃取DNA的確認……………………..…71
(十三)PKD1基因檢測的結果與超音波學檢測結果之間
的關係…………………………………………………………...72
第五章 討論……………………………………………………………………….…74
第一節 貓多囊腎病的流行病學調查……………………………...……………74
一、在台灣中部地區貓隻PKD的盛行率……………………………...…74
二、品種……………………………………………………………………75
三、被毛長短………………………………………………………………76
四、性別……………………………………………………………………76
五、年齡……………………………………………………………………77
六、腎臟指數………………………………………………………………77
第二節 從毛囊抽取DNA應用於貓PKD的診斷……………………….………77
第三節 比較超音波以及PKD1基因檢測用於診斷貓PKD
之間的關係…………………………………………………………....…78
一、超音波檢查……………………………………………………………79
二、PKD1基因檢測……………………………………………….………79
三、超音波檢查與PKD1基因檢測之評估……………………….………79
第四節 利用超音波和基因檢測方法診斷的一致性…………………………...81
參考文獻………………………………………………………………………………82








參考文獻
林凱威。影響小動物急性腎衰竭之預後指標與犬隻使用中央靜脈導管相關感染之評估。國立中興大學獸醫學研究所臨床組碩士論文。台中,中華民國,2007。
陳欣愉。基因PKD1突變與超音波檢測用於診斷貓多囊腎病的相關性。國立中興大學獸醫學研究所臨床組碩士論文。台中,中華民國,2008。
Adin CA, Gregory CR, Kyles AE, Cowgill L. Diagnostic predictors of complications and survival after renal transplantation in cats. Vet Surg. 30: 515-521, 2001.
Arnaout MA. Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annu Rev Med. 52: 93-123, 2001.
Babich V, Zeng WZ, Yeh BI, Ibraghimov-Beskrovnaya O, Cai Y, Somlo S, Huang CL. The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J Biol Chem. 279: 25582-25589, 2004.
Badenas C, Torra R, Perez-Oller L, Mallolas J, Talbot-Wright R, Torregrosa V, Darnell A. Loss of heterozygosity in renal and hepatic epithelial cystic cells from ADPKD1 patients. Eur J Hum Genet. 8: 487-492, 2000.
Barrs VR, Gunew M, Foster SF, Beatty JA, Malik R. Prevalence of autosomal dominant polycystic kidney disease in Persian cats and related-breeds in Sydney and Brisbane. Aust Vet J. 79: 257-259, 2001.
Barthez PY, Rivier P, Begon D. Prevalence of polycystic kidney disease in Persian and Persian related cats in France. J Feline Med Surg. 5: 345-347, 2003.
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 365: 1054-1061, 2005.
Beck C, Lavelle RB. Feline polycystic kidney disease in Persian and other cats: a prospective study using ultrasonography. Aust Vet J. 79: 181-184, 2001.
Bergmann C, Kupper F, Dornia C, Schneider F, Senderek J, Zerres K. Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat. 25: 225-231, 2005.
Biller DS, Chew DJ, DiBartola SP. Polycystic kidney disease in a family of Persian cats. J Am Vet Med Assoc. 196: 1288-1290, 1990.
Biller DS, DiBartola SP, Eaton KA, Pflueger S, Wellman ML, Radin MJ. Inheritance of polycystic kidney disease in Persian cats. J Hered. 87: 1-5, 1996.
Boca M, D''Amato L, Distefano G, Polishchuk RS, Germino GG, Boletta A. Polycystin-1 Induces Cell Migration by regulating PI3kinase-dependent cytoskeletal rearrangements and GSK3-β dependent cell cell mechanical adhesion. Mol Biol Cell. 18: 4050-4061, 2007.
Boca M, Distefano G, Qian F, Bhunia AK, Germino GG, Boletta A. Polycystin-1 induces resistance to apoptosis through the phosphatidylinositol 3-kinase/Akt signaling pathway. J Am Soc Nephrol. 17: 637-647, 2006.
Bogdanova N, Dworniczak B, Dragova D, Todorov V, Dimitrakov D, Kalinov K, Hallmayer J, Horst J, Kalaydjieva L. Genetic heterogeneity of polycystic kidney disease in Bulgaria. Hum Genet. 95: 645–650, 1995.
Boletta A. Emerging evidence of a link between the polycystins and the mTOR pathways. Pathogenetics. 28:6, 2009.
Bonazzi M, Volta A, Gnudi G, Bottarelli E, Gazzola M, Bertoni G. Prevalence of the polycystic kidney disease and renal and urinary bladder ultrasonographic abnormalities in Persian and Exotic Shorthair cats in Italy. J Feline Med Surg. 9: 387-391, 2007.
Bonazzi M, Volta A, Gnudi G, Cozzi MC, Strillacci MG, Polli M, Longeri M, Manfredi S, Bertoni G. Comparison between ultrasound and genetic testing for the early diagnosis of polycystic kidney disease in Persian and Exotic Shorthair cats. J Feline Med Surg. 11: 430-434, 2009.
Bosje JT, van den Ingh TS, van der Linde-Sipman JS. Polycystic kidney and liver disease in cats. Vet Q. 20: 136-139, 1998.
Braun WE. Autosomal dominant polycystic kidney disease: emerging concepts of pathogenesis and new treatments. Cleve Clin J Med. 76: 97-104, 2009.
Bukanov NO, Husson H, Dackowski WR, Lawrence BD, Clow PA, Roberts BL, Klinger KW, Ibraghimov-Beskrovnaya O. Functional polycystin-1 expression is developmentally regulated during epithelial morphogenesis in vitro: downregulation and loss of membrane localization during cystogenesis. Hum Molec Genet. 11: 923–936, 2002.
Bukanov NO, Smith LA, Klinger KW, Ledbetter SR, Ibraghimov-Beskrovnaya O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 444: 949-952, 2006.
Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW. Increased left ventricular mass in children with autosomal dominant polycystic kidney disease and borderline hypertension. Kidney Int. 74: 1192-1196, 2008.
Cannon MJ, MacKay AD, Barr FJ, Rudorf H, Bradley KJ, Gruffydd-Jones TJ. Prevalence of polycystic kidney disease in Persian cats in the United Kingdom. Vet Rec. 149: 409-411, 2001.
Chapman AB, Johnson AM, Gabow PA. Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: how to diagnose and who to screen. Am J Kidney Dis. 22: 526-531, 1993.
Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T, Igarashi P, Bennett AM, Ibraghimov-Beskrovnaya O, Somlo S, Caplan MJ. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest. 114: 1433-1443, 2004.
Choong M, Phillips GW. Renal transitional cell carcinoma mimicking medullary sponge kidney. Br J Radiol. 64: 275-277, 1991.
Christodoulou K, Tsingis M, Stavrou C, Eleftheriou A, Papapavlou P, Patsalis PC, Ioannou P, Pierides A, Constantinou Deltas C. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum Mol Genet. 7: 905-911, 1998.
Cowgill LD, Elliott DA. Hemodialysis. In: Dibartola SP, ed. Fluid therapy in small animal practice, 2nd ed. W.B. Saunder Co., Philadelphia, USA, 1615-1633, 2000.
Cuppage FE, Huseman RA, Chapman A, Grantham JJ. Ultrastructure and function of cysts from human adult polycystic kidneys. Kidney Int. 17: 372-381, 1980.
Daoust MC, Reynolds DM, Bichet DG, Somlo S. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics. 25: 733-736, 1995.
Daoust MC, Reynolds DM, Bichet DG, Somlo S. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics 25: 733-736, 1995.
Deane JA, Ricardo SD. Polycystic kidney disease and the renal cilium. Nephrology (Carlton). 12: 559-564, 2007.
Derezic D, Cecuk L. Hydrostatic pressure within renal cysts. Br J Urol. 54: 93-94, 1982.
De Rycke M, Georgiou I, Sermon K, Lissens W, Henderix P, Joris H, Platteau P, Van Steirteghem A, Liebaers I. PGD for autosomal dominant polycystic kidney disease type 1. Mol Hum Reprod. 11: 65-71, 2005.
Distefano G, Boca M, Rowe I, Wodarczyk C, Ma L, Piontek KB, Germino GG, Pandolfi PP, Boletta A. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its down stream effectors S6K and 4EBP1. Mol Cell Biol. 29: 2359-2371, 2009.
Domanjko-Petric A, Cernec D, Cotman M. Polycystic kidney disease: a review and occurrence in Slovenia with comparison between ultrasound and genetic testing. J Feline Med Surg. 2007.
Dunnill MS, Millard PR, Oliver D. Acquired cystic disease of the kidneys: a hazard of long-term intermittent maintenance haemodialysis. J Clin Pathol. 30: 868-877, 1977.
Eaton KA, Biller DS, DiBartola SP, Radin MJ, Wellman ML. Autosomal dominant polycystic kidney disease in Persian and Persian-cross cats. Vet Pathol. 34: 117-126, 1997.
Elliott J, Barber PJ. Feline chronic renal failure: clinical findings in 80 cases diagnosed between 1992 and 1995. J Small Anim Pract. 39: 78-85, 1998.
Elzinga LW, Golper TA, Rashad AL, Carr ME, Bennett WM. Trimethoprim-sulfamethoxazole in cyst fluid from autosomal dominant polycystic kidneys. Kidney Int. 32: 884-888, 1987.
Elzouki AY, al-Suhaibani H, Mirza K, al-Sowailem AM. Thin-section computed tomography scans detect medullary cysts in patients believed to have juvenile nephronophthisis. Am J Kidney Dis. 27: 216-219, 1996.
Forman JR, Qamar S, Paci E, Sandford RN, Clarke J. The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol. 349: 861-871, 2005.
Gabow PA, Kaehny WD, Johnson AM, Duley IT, Manco-Johnson M, Lezotte DC, Schrier RW. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 35: 675-680, 1989.
Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 329: 332-342, 1993.
Gabow PA. Autosomal dominant polycystic kidney disease--more than a renal disease. Am J Kidney Dis. 16: 403-413, 1990.
Grantham JJ, Nair V, Winklhofer F. Cystic diseases of the kidney. In: Barry MB ed. The kidney, 6th ed., Philadelphia, WB Sauders. 1699-1721, 2000.
Grantham JJ. The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. Am J Kidney Dis. 28: 788-803, 1996.
Grantham JJ. The Jeremiah Metzger Lecture. Polycystic kidney disease: old disease in a new context. Trans Am Clin Climatol Assoc. 113: 211-224; discussion 224-216, 2002.
Grantham JJ, Cook LT, Torres VE, Bost JE, Chapman AB, Harris PC, Guay-Woodford LM, Bae KT. Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int. 73: 108-116, 2008.
Grauer GF. Fluid therapy in acute and chronic renal failure. Vet Clin North Am Small Anim Pract. 28: 609-622, 1998.
Gregory CR, Kyles AE, Bernsteen L, Mehl M. Results of clinical renal transplantation in 15 dogs using triple drug immunosuppressive therapy. Vet Surg. 35: 105-112, 2006.
Grunfeld JP, Bennett WM. Clinical aspects of autosomal dominant polycystic kidney disease. Curr Opin Nephrol Hypertens. 4: 114-120, 1995.
Grunfeld JP,Albouze G, Jungers P, et al. Liver changes and complications in adult polycystic kidney disease. Adv Nephrol. 14: 1, 1984.
Guay-Woodford LM. Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol. 285: F1034-1049, 2003.
Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. 111: 1072-1080, 2003.
Kappe EC, Hecht W, Gerwing M, Michele U, Reinacher M. Polycystic kidney disease in the German population of Persian cats. A comparative study of ultrasonographical examination and genetic testing. Tierarztl Prax Ausg K Kleintiere Heimtiere. 33: 413-418, 2005.
Harris PC, Rossetti S. Molecular genetics of autosomal recessive polycystic kidney disease. Mol Genet Metab. 81: 75-85, 2004.
Harris PC, Ward CJ, Peral B, Hughes J. Autosomal dominant polycystic kidney disease: molecular analysis. Hum Mol Genet. 4:1745-1749, 1995.
Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T, Henske EP. The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 18: 151-163, 2009.
Helps C, Tasker S, Harley R. Correlation of the feline PKD1 genetic mutation with cases of PKD diagnosed by pathological examination. Exp Mol Pathol. 83: 264-268, 2007.
Higashihara E, Aso Y, Shimazaki J, Ito H, Koiso K, Sakai O. Clinical aspects of polycystic kidney disease. J Urol. 147: 329-332, 1992.
Hildebrandt F, Strahm B, Nothwang HG, Gretz N, Schnieders B, Singh-Sawhney I, Kutt R, Vollmer M, Brandis M. Molecular genetic identification of families with juvenile nephronophthisis type 1: rate of progression to renal failure. APN Study Group. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Kidney Int. 51: 261-269, 1997.
Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 28: 4104-4115, 2008.
Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 10: 151-160, 1995.
Hughson MD, Buchwald D, Fox M. Renal neoplasia and acquired cystic kidney disease in patients receiving long-term dialysis. Arch Pathol Lab Med. 110: 592-601, 1986.
Ibraghimov-Beskrovnaya O, Bukanov N. Polycystic kidney diseases: from molecular discoveries to targeted therapeutic strategies. Cell Mol Life Sci. 65: 605-619, 2008.
Ishikawa I. Acquired renal cystic disease. In: Gardner KD Jr, Bernstein J eds. The Cystic Kidney. Kluwer., Boston, 351-377, 1990.
Johnson AM, Gabow PA. Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J Am Soc Nephrol. 8: 1560-1567, 1997.
Keith DS, Torres VE, Johnson CM, Holley KE. Effect of sodium chloride, enalapril, and losartan on the development of polycystic kidney diseases in Han:SPRD rats. Am J Kidney Dis. 24: 491-498, 1994.
Kim E, Arnould T, Sellin LK, Benzing T, Fan MJ, Gruning W, Sokol SY, Drummond I, Walz G. The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem. 274: 4947-4953, 1999.
Kim K, Drummond I, Ibraghimov-Beskrovnaya O, Klinger K, Arnaout MA. Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci USA 97: 1731–1736, 2000.
Kimberling WJ, Kumar S, Gabow PA, Kenyon JB, Connolly CJ, Somlo S. Autosomal dominant polycystic kidney disease: localization of the second gene to chromosome 4q13-q23. Genomics. 18: 467-472, 1993.
Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 4: 191–197, 2002.
Kutper JJ. Medullary sponge kidney. In: Gardner KD, eds. Cystic diseases of the kidney. John Wiley and Sons, New York, 151-171, 1976.
Labato MA. Peritoneal dialysis in emergency and critical care medicine. Clin Tech Small Anim Pract. 15: 126-135, 2000.
Labato MA. Strategies for management of acute renal failure. Vet Clin North Am Small Anim Pract. 31: 1265-1287, vii, 2001.
Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet. 13: 3069-3077, 2004.
Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, Crews CM. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci U S A. 104: 4389-4394, 2007.
Levine E. Renal cell carcinoma in uremic acquired renal cystic disease: incidence, detection, and management. Urol Radiol. 13: 203-210, 1992.
Lifson BJ, Teichman JM, Hulbert JC. Role and long-term results of laparoscopic decortication in solitary cystic and autosomal dominant polycystic kidney disease. J Urol. 159: 702-705; discussion 705-706, 1998.
Lu W, Peissel B, Babakhanlou H, Pavlova A, Geng L, Fan X, Larson C, Brent G, Zhou J. Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd1 mutation. Nat Genet. 17: 179–181, 1997.
Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, Harris PC, Genest DR, Perez-Atayde AR, Zhou J. Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet. 10: 2385-2396, 2001.
Lyons LA, Biller DS, Erdman CA, Lipinski MJ, Young AE, Roe BA, Qin B, Grahn RA. Feline polycystic kidney disease mutation identified in PKD1. J Am Soc Nephrol. 15: 2548-2555, 2004.
Magistroni R, Manfredini P, Furci L, Ligabue G, Martino C, Leonelli M, Scapoli C, Albertazzi A. Epidermal growth factor receptor polymorphism and autosomal dominant polycystic kidney disease. J Nephrol. 16: 110–115, 2003.
McEvoy FJ, Koch J, Pedersen KM, Nielsen DH, Mantis P. Accuracy of diagnostic ultrasound for detection of cystic lesions: determination using receiver operating characteristic curve analysis of findings in phantom studies. Vet Radiol Ultrasound. 44: 443-449, 2003.
Menezes LF, Cai Y, Nagasawa Y, Silva AM, Watkins ML, Da Silva AM, Somlo S, Guay-Woodford LM, Germino GG, Onuchic LF. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int. 66: 1345-1355, 2004.
Miller RH, Lehmkuhl LB, Smeak DD, DiBartola SP, Radin J. Effect of enalapril on blood pressure, renal function, and the renin-angiotensin-aldosterone system in cats with autosomal dominant polycystic kidney disease. Am J Vet Res. 60: 1516-1525, 1999.
Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 272: 1339-1342, 1996.
Moser M, Dahmen S, Kluge R, Grone H, Dahmen J, Kunz D, Schorle H, Buettner R. Terminal renal failure in mice lacking transcription factor AP-2 beta. Lab Invest. 83: 571-578, 2003.
Nahm AM, Ritz E. The simple renal cyst. Nephrol Dial Transplant. 15: 1702-1704, 2000.
Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 33: 129-137, 2003.
Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17: 2503-2516, 1989.
Nichols WC, Liepnieks JJ, McKusick VA, Benson MD. Direct sequencing of the gene for Maryland/German familial amyloidotic polyneuropathy type II and genotyping by allele-specific enzymatic amplification. Genomics. 5: 535-540, 1989.
Ong AC. Polycystin expression in the kidney and other tissues: complexity, consensus and controversy. Exp Nephrol. 8: 208–14, 2000.
Old JM, Varawalla NY, Weatherall DJ. Rapid detection and prenatal diagnosis of beta-thalassaemia: studies in Indian and Cypriot populations in the UK. Lancet. 336: 834-837, 1990.
Osther PJ, Mathiasen H, Hansen AB, Nissen HM. Urinary acidification and urinary excretion of calcium and citrate in women with bilateral medullary sponge kidney. Urol Int. 52: 126-130, 1994.
Ottesen N. Polycystic kidney disease in Persian cats: comparison of renal ultrasonography at the age of 3 and 12 months. Vet Radiol Ultrasound. 45: 600, 2004.
Pantaleo V, Francey T, Fischer JR, Cowgill LD. Application of hemodialysis for the management of acute uremia in cats: 119 cases (1993-2003). J Vet Intern Med 2004;18: 418, 2004. (abstract)
Parfrey PS, Bear JC, Morgan J, Cramer BC, McManamon PJ, Gault MH, Churchill DN, Singh M, Hewitt R, Somlo S, et al. The diagnosis and prognosis of autosomal dominant polycystic kidney disease. N Engl J Med. 323: 1085-1090, 1990.
Parfrey PS, Davidson WS, Green JS. Clinical and genetic epidemiology of inherited renal disease in Newfoundland. Kidney Int. 61: 1925–1934, 2002.
Parks JH, Coe FL, Strauss AL. Calcium nephrolithiasis and medullary sponge kidney in women. N Engl J Med. 306: 1088-1091, 1982.
Per Y. A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease? Treds Mol Med. 7: 151-156, 2001.
Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 184: 71-79, 2001.
Qian Q, Du H, King BF, Kumar S, Dean PG, Cosio FG, Torres VE. Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol. 19: 631-638, 2008.
Qian Q, Li M, Cai Y, Ward CJ, Somlo S, Harris PC, Torres VE. Analysis of the polycystins in aortic vascular smooth muscle cells. J Am Soc Nephrol. 14: 2280-2287, 2003.
Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 343: 824-827, 1994.
Reichle JK, DiBartola SP, Leveille R. Renal ultrasonographic and computed tomographic appearance, volume, and function of cats with autosomal dominant polycystic kidney disease. Vet Radiol Ultrasound. 43: 368-373, 2002.
Reuss A, Wladimiroff JW, Stewart PA, Niermeijer MF. Prenatal diagnosis by ultrasound in pregnancies at risk for autosomal recessive polycystic kidney disease. Ultrasound Med Biol. 16: 355-359, 1990.
Ritz E, Seier M, Geberth S, et al. Dialysis and transplantation management in ADPKD. In: Gabow PA, Grantham JJ eds. Proceedings of the fifth international workshop on polycystic kidney disease. Polycystic kidney disease research foundation, Kansas city, MO, 51, 1993.
Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 18: 2143-2160, 2007.
Roy S, Dillon MJ, Trompeter RS, Barratt TM. Autosomal recessive polycystic kidney disease: long-term outcome of neonatal survivors. Pediatr Nephrol. 11: 302-306, 1997.
Ruggenenti P, Remuzzi A, Ondei P, Fasolini G, Antiga L, Ene-Iordache B, Remuzzi G, Epstein FH. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 68: 206-216, 2005.
Schrier RW, McFann KK, Johnson AM. Epidemiological study of kidney survival in autosomal dominant polycystic kidney disease. Kidney Int. 63: 678-685, 2003.
Seeman T, Dusek J, Vondrichova H, Kyncl M, John U, Misselwitz J, Janda J. Ambulatory blood pressure correlates with renal volume and number of renal cysts in children with autosomal dominant polycystic kidney disease. Blood Press Monit. 8: 107-110, 2003.
Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A. 103: 5466-5471, 2006.
Silvestro D. On a case of bilateral polycystic kidney in a cat. Acta Med Vet Napoli. 13: 349-361, 1967.
Singla V, Reiter JF. The primary cilium as the cell''s antenna: signaling at a sensory organelle. Science. 313: 629-633, 2006.
Smith LA, Bukanov NO, Husson H, Russo RJ, Barry TC, Taylor AL, Beier DR, Ibraghimov-Beskrovnaya O. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J Am Soc Nephrol. 17: 2821-2831, 2006.
Sommer SS, Cassady JD, Sobell JL, Bottema CD. A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin Proc. 64: 1361-1372, 1989.
Sullivan LP, Wallace DP, Grantham JJ. Chloride and fluid secretion in polycystic kidney disease. J Am Soc Nephrol. 9: 903-916, 1998.
Tahvanainen P, Tahvanainen E, Reijonen H, Halme L, Kaariainen H, Hockerstedt K. Polycystic liver disease is genetically heterogeneous: Clinical and linkage studies in eight Finnish families. J Hepatol. 38: 39–43, 2003.
Tao Y, Kim J, Faubel S, Wu JC, Falk SA, Schrier RW, Edelstein CL. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc Natl Acad Sci U S A. 102: 6954-6959, 2005.
Torra R, Badenas C, Darnell A, Nicolau C, Volpini V, Revert L, Estivill X. Linkage, clinical features, and prognosis of autosomal dominant polycystic kidney disease types 1 and 2. J Am Soc Nephrol. 7: 2142–2151, 1996.
Torres VE, Erickson SB, Smith LH, Wilson DM, Hattery RR, Segura JW. The association of nephrolithiasis and autosomal dominant polycystic kidney disease. Am J Kidney Dis. 11: 318-325, 1988.
Torres VE, Harris PC. Autosomal dominant polycystic kidney disease. Nefrologia. 23 Suppl 1: 14-22, 2003.
Torres VE, Harris PC. Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med. 261: 17-31, 2007.
Uemasu J, Fujiwara M, Munemura C, Tokumoto A, Kawasaki H. Effects of topical instillation of minocycline hydrochloride on cyst size and renal function in polycystic kidney disease. Clin Nephrol. 39: 140-144, 1993.
van Collenburg JJ, Thompson MW, Huber J. Clinical, pathological and genetic aspects of a form of cystic disease of the renal medulla: familial juvenile nephronophthisis (FJN). Clin Nephrol. 9: 55-62, 1978.
Verani R, Walker P, Silva FG. Renal cystic disease of infancy: results of histochemical studies. A report of the Southwest Pediatric Nephrology Study Group. Pediatr Nephrol. 3: 37-42, 1989.
Verani RR, Silva FG. Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. Mod Pathol. 1: 457-463, 1988.
Wang S, Zhang J, Nauli SM, Li X, Starremans PG, Luo Y, Roberts KA, Zhou J. Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol. 27: 3241-3252, 2007.
Waterfall CM, Cobb BD. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis. Nucleic Acids Res. 29: E119, 2001.
Watson ML, Macnicol AM, Allan PL, Wright AF. Effects of angiotensin converting enzyme inhibition in adult polycystic kidney disease. Kidney Int. 41: 206-210, 1992.
Waye JS, Nakamura LM, Eng B, Hunnisett L, Chitayat D, Costa T, Nowaczyk MJ. Smith-Lemli-Opitz syndrome: carrier frequency and spectrum of DHCR7 mutations in Canada. J Med Genet. 39: E31, 2002.
Wei W, Hackmann K, Xu H, Germino G, Qian F. Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem. 282: 21729-21737, 2007.
Wilson PD. Polycystic kidney disease. N Engl J Med. 350: 151-164, 2004a.
Wilson PD. Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol. 36: 1868-1873, 2004b.
Wu DY, Ugozzoli L, Pal BK, Wallace RB. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 86: 2757-2760, 1989.
Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem. 279: 40419-40430, 2004.
Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem. 279: 40419-40430, 2004.
Yendt ER. Medullary sponge kidney. In: Gardner KD, Bernstein J eds. The cystic kidney. Kluwer, Boston, 379-391, 1990.
Young AE, Biller DS, Herrgesell EJ, Roberts HR, Lyons LA. Feline polycystic kidney disease is linked to the PKD1 region. Mamm Genome. 16: 59-65, 2005.
Yu S, Hackmann K, Gao J, He X, Piontek K, Garci a-Gonza lez MA, Menezes LF, Xu H, Germino GG, Zuo J, Qian F. Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc Natl Acad Sci U S A. 104: 18688-18693, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top