跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/24 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊乃樺
研究生(外文):Nai-Hua Yang
論文名稱:適合市場區隔應用的多維度關聯規則探勘技術之研究
論文名稱(外文):Mining Multidimensional Association Rules for Market Segmentation
指導教授:李御璽李御璽引用關係朱美珍朱美珍引用關係
指導教授(外文):Yue-Shi LeeMei-Chen Chu
學位類別:碩士
校院名稱:銘傳大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:多維度關聯規則市場區隔集群
外文關鍵詞:Multidimensional association ruleMarket SegmentationClustering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
現今的市場是以顧客導向為主,在這競爭激烈的環境下,企業需要為顧客提
供適合的服務以提升競爭力,因此,企業擁有更精確的顧客資訊就可以制定較準
確且有利的策略。關聯規則是從交易資料庫中挖掘大部分顧客的購買行為之不同
產品之間的關連性,更進一步的我們可以挖掘出顧客購買行為模式和顧客特徵之
間的關連性。
本研究提出一個適合市場區隔應用的多維度關聯規則探勘技術,利用條件式
資料庫(conditional database) 挖掘出包含顧客特徵與顧客購買行為的多維度關聯
規則,不需要多次掃瞄目標資料庫並且結合集群的方法將數值屬性自動離散化。
本研究提供兩種不同角度的結果,一個是在不同的客戶特徵下去挖掘出經常被購
買的產品組合,另一個是在不同的產品組合之下,找出經常購買該產品的顧客特
徵,兩種角度的結果可以提供決策者做市場區隔和制訂更為精確的策略。
Today is a customer-oriented market. Enterprises need to give every customer
appropriate service. The more precise information can make accurate and profitable
strategies. Association rules provide correlations between data items in large numbers
of data. The further exploration is to discover relationship between customer’s
features and customer purchasing behaviors.
This paper proposes a new method to discover mining multidimensional
association rule for market segmentation. We use conditional databases to discover
multidimensional association rule, do not scan the target database many times and
combine cluster method to automatically discretize numerical-type attributes. Our
method analyzes CRM data from two different points of view. One is the product
combinations according to different customer features; another is the customer
features according to purchased products of customers. These two different points of
view can provide decision-makers to establish customer profiles, segment market and
make strategies more accurately.
摘 要...............................................................i
ABSTRACT...........................................................ii
誌 謝.............................................................iii
Table of Contents..................................................iv
List of Tables.....................................................vi
List of Figures...................................................vii
Chapter 1 Introduction..............................................1
1.1 Background......................................................................................................1
1.2 Motivation........................................................................................................4
1.3 Objective ..........................................................................................................5
Chapter 2 Related Work..............................................7
2.1 Single-dimensional association rule ................................................................7
2.2 Multidimensional association rule ...................................................................8
Chapter 3 Definitions..............................................15
3.1 Association Rule ............................................................................................15
3.2 Multidimensional Data and Itemsets .............................................................16
Definition. ....................................................................................................17
Chapter 4 Mining Multidimensional Association Rules................18
Part 1: Focus on Categorical-type Attributes.......................................................18
Step 1 : Find length-1 frequent items...........................................................19
Step 2 : Order and condense data.................................................................20
Step 3 : Partition database by length-1 frequent items ................................20
Step 4 : Find length-k frequent itemsets by conditional databases..............21
Part 2 : Focus on Numerical-type Attributes .......................................................23
Step 1 : Project values of numerical-type attributes on space. ....................24
Step 2 : Segment space. ...............................................................................25
Step 3 : Find all clusters to generate itemsets. .............................................25
Step 4 : Use minimum support threshold to prune clusters. ........................26
View 1: Discover popular products combinations according to customer features.
..............................................................................................................................28
View 2: Discover customer features according to purchased products ...............34
Chapter 5 Experiments..............................................40
5.1 Experiments for categorical-type dataset.......................................................40
5.2 Experiments for different points of views .....................................................52
5.2.1 Experiments for View 1......................................................................53
v
5.2.2 Experiments for View 2......................................................................56
Chapter 6 Conclusion and Future Work...............................59
References.........................................................61
[1] B. Karakostas, D. Kardaras and E. Papathanassiou, “The state of CRM adoption by the financial services in the UK: an empirical investigation”, Information and Management, Vol.42, No.6, pp.853-863, September 2005.
[2] Hung C. and Tsai C.-F. “Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand,“ Expert Systems with Applications, Vol.34, No.3, 2008, In Press.
[3] C. Rygielski, J. C. Wang and D. C. Yen, “Data mining techniques for customer relationship management,” Technology in Society, Vol.24, No.4, pp. 483-502, November 2002.
[4] Luis E. Mendoza, Alejandro Marius, María Pérez and Anna C. Grimán,”Critical success factors for a customer relationship management strategy” Information and Software Technology, December 2006, In Press.
[5] J. Han, J. Pei, Y. Yin and R. Mao. “Mining Frequent Patterns without Candidate Generation: A Frequent- Pattern Tree Approach,” Data Mining and Knowledge Discovery, Vol.8, No.1, pp. 53-87, 2004.
[6] J. Han, L. V. S. Lakshmanan and R. T. Ng, “Constraint-Based, Multidimensional Data Mining,” IEEE Computer, Vol. 32, pp. 46-50 1999.
[7] J. Chiang, C. C. Wu, “Mining multi-dimension association rules in multiple database segmentation,” International Conference on Information Management, May 2005.
[8] M. J. Shaw, C. Subramaniam, G. W. Tan and M. E. Welge “Knowledge management and data mining for marketing,“ Decision Support Systems, Vol.31, No.1, pp. 127-137, May 2001.
[9] P. S.M. Tasi, C. M. Chen, “Mining interesting association rules from customer databases and transaction databases,” Information Systems, 29, 685-696, 2004.
[10] R. Agrawal, et al. “Fast Algorithm for Mining Association Rules,” Proceedings of the International Conference on Very Large Data Bases, pp. 487-499, 1994.
[11] R. S. Winer, Haas School of Business, University of California, Berkeley, “Customer Relationship Management A Framework, Research Directions, and the Future,” 2001.
[12] W. Xu and R. Wang, “A Novel Algorithm of Mining Multidimensional Association Rules,” International Conference on Intelligent Computing, Kunming, China, August 2006.
[13] W. Frawley and G. Piatetsky-Shapiro and C. Matheus, Knowledge Discovery in Databases: An Overview. AI Magazine, Fall 1992, pp. 213-228.
[14] Wendell R. Smith “Product Differentiation and Market Segmentation as Alternative Marketing Strategies,” Journal of Marketing, Vol. 21, No. 1, pp. 3-8, July 1956.
[15] Wei Wang, Jiong Yang, Richard Muntz, “Temporal Association Rules with Numerical Attributes,” Proceedings of the 17th International Conference on Data Engineering, 283–292,2001.
[16] Yang, B.R., Sun, H.H., Xiong F.L., “Mining Quantitative Association Rules with Standard SQL Queries and it’s Evaluation.” Journal of Computer Research and Development, Vol.39 307-312, 2002
[17] Yingjiu Li, Peng Ning, X. Sean Wang, Sushil Jajodia, “Discovering calendar-based temporal association rules,” Data & Knowledge Engineering, 44, 193–218, 2003.
[18] Y. Li, P. Ning, X. S. Wang, S. Jajodia, “Discovering calendar-based temporal association rules,” Data and Knowledge Engineering, Vol.44, pp.193–218, 2003.
[19] Y. S. Lee, S. J. Yen, S. S. Lin and Y. C. Liu, “Integrating Multidimensional Association Rule Mining into Classification,” Proceedings of International Conference on Informatics, Cybernetics, and Systems, pp. 831-836, December 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 許碧勳、吳青蓉(2008)。一所幼兒園主題教學創意世界的蛻變。育達學院學報,15,61-85。
2. 林佩蓉、陳娟娟(2009)。幼稚園輔導計畫之現況分析與省思。國教新知,56(4),15-26。
3. 林育瑋(1996)。幼教教師的專業成長歷程。臺北師院學報,9,803-832。
4. 張素貞(2004)。課程變革與教師專業成長。研習資訊,21(2),63-72。
5. 林春妙、楊淑朱(2005)。幼兒教師專業知能之研究。兒童與教育研究,1,55-84。
6. 李俊湖(2007)。教師專業成長。研習資訊雙月刊,24(6),97-102。
7. 吳樎椒、張宇樑(2009)。幼稚園教師對主題統整的知覺研究。台南大學教育研究學報,43(2),81-105。
8. 何欣姿(2007)。一位幼稚園初任教師實施統整課程之研究。研習資訊,24,71-78。
9. 陳海倫、林珮伃(2009)。從團討出發走向師生共同建構的課程。幼兒教育年刊,20,125-147。
10. 陳淑琴(2002)。課程統整模式探討。幼兒教育年刊,14,37-53。
11. 陳聖謨(2003)。主題式統整課程的設計與實施。教師之友,44(1),44-58。
12. 游家政(2000)。學校課程的統整及其教學。課程與教學季刊,3(1),19-38。
13. 游振鵬、蕭立成(2008)。幼教教師專業發展面向之理論分析。研習資訊,25(3),113-120。
14. 黃琡惠(2009)。Beane統整的課程之概念分析與設計程序簡介。教師之友,50(5),54 - 59。
15. 劉淑娟、周淑惠(2013)。在專業發展幼兒園中邁向開放之路-一位幼教師專業成長之探究。幼兒教育年刊,24,153-174。