跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭宇傑
研究生(外文):Cheng, Yu-Chieh
論文名稱:寬負載範圍雙調變模式電流控制降壓穩壓器設計
論文名稱(外文):Design of a Dual-mode Current-Control DC-DC Buck Converter with Wide Load Range
指導教授:葉美玲葉美玲引用關係
指導教授(外文):Yeh, Mei-Ling
口試委員:林嘉洤黃淑絹葉美玲
口試委員(外文):Lin, Jia-ChuanHuang, Shu-ChuanYeh, Mei-Ling
口試日期:2016-12-23
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:93
中文關鍵詞:降壓穩壓器脈波寬度調變模式脈波省略調變模式電流控制模式
外文關鍵詞:Buck RegulatorPWMPSMCurrent Control Mode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技迅速發展,各種電子產品的出現改變了人類的生活習慣,其中以可攜式電子產品(智慧型手機、智慧型手錶…)最為熱潮,從以前人們只是用手機來打電話,到現在還能聽音樂、拍照、玩遊戲、查地圖等等,對於人類的生活來說已是不可或缺的重要角色之一。然而這些智慧型可攜式產品的發展主要有兩大點
:其一是擁有更多更多的功能,滿足每個使用者的需求;另外則是體積越來越輕薄。然而要符合以上兩點要求,電力的有效利用是非常重要的,一顆電池需對許多不同的模組提供電力,然而在輕薄的體積中,電池的電量一直沒有技術性的突破,於是電源管理系統在此扮演著重要的角色,一個好的電源管理系統能將電池的電力作最有效的利用,不只增加智慧型裝置的使用時間,也能增加電池壽命。

本論文設計因應現在智慧型可攜式產品的發展需求,利用提升操作頻率的方式減少外接元件的尺寸,降低整體系統的體積。另外高切換頻率除了對系統的穩定度有影響外,脈波寬度調變模式(PWM)的轉換效率也會隨著頻率增加而下降,尤其在輕負載時PWM的轉換效率下降幅度最大。由以上幾點考量,首先本設計採用電流控制模式,在穩定度上較電壓控制模式來的優秀;接著結合雙調變模式,於輕載時使用脈波省略調變模式(PSM),減少切換損失提升轉換效率。最後將功率級MOSFET分塊,以智慧型開關於不同的負載範圍開啟相對應的功率級MOSFET,達到各個不同負載下轉換效率的最佳化。

整體設計使用國家晶片系統設計中心(CIC)所提供的TSMC 0.35um Mixed-Signal 2P4M Polycide的製程技術,使用電流控制模式作為本設計的基本架構,並且結合雙調變模式與功率級電晶體的分塊,輔以智能開關控制達到提升整體轉換效率的效果。輸入電壓範圍為3.3V~4.2V,符合現階段鋰離子聚合物電池之應用。操作頻率為10MHz,輸出電壓為2V,負載範圍為50mA~500mA,輸出電壓漣波在4mV左右,當負載為500mA時可得到最高轉換效率約為87%左右,而負載為50mA時的效率為73%左右,晶片面積為1.934 * 1.884 mm2。
With the rapid development of science and technology, the emergence of a variety of electronic products has changed the living habits of mankind. One of the most popular is the portable electronic products (such as smart phones, smart watches ...). From the past, people only use mobile phones to call, but now the phones can listen to music, take pictures, play games, check maps, etc., which play an indispensable role for human life. However, there are two main points for the development of these smart portable products: one is to have more and more features to meet the needs of each user; the other is the size of the product becomes more and more light. To achieve the mentioned two requirements, the effective use of electricity is very important. A battery needs to supply power to many different modules. However, the volume of products is getting smaller, the breakthrough progress has not been made in battery power. As a result, power management system plays an important role here. A good power management system can make the most efficient use of battery power, not only increase the time of using intelligent devices, but also extend battery life.

The design of this thesis is responded to the development of today’s intelligent portable products, reducing the size of the external components to lower the overall system volume by increasing the operating frequency. However, in addition to affecting the stability of the system by high operating frequency, the conversion efficiency of the pulse width modulation mode (PWM) may also decrease due to the increase of the frequency. In particular, the conversion efficiency of PWM at light loads decreases the most. From the above considerations, this design uses the current control mode, which has a better stability than the voltage control mode. Then by combining the dual modulation modes, pulse skipping modulation (PSM) is used at light loads to reduce switching losses to improve conversion efficiency. At last, the power MOSFET is divided into groups of blocks, and open the corresponding power MOSFET in different load range by the intelligent switching control. As a result, conversion efficiencies at different load ranges can be optimized.

The overall design is implemented by TSMC 0.35um Mixed-Signal 2P4M Polycide process, which is provided by National Chip Implementation Center (CIC). The regulator uses the current control mode as the basic structure of the design combined with dual modulation modes and multiple power MOSFETs, and then controlling the regulator by intelligent switch to enhance the overall conversion efficiency. The regulator can be used by lithium ion polymer battery with a working voltage range from 3.3V to 4.2V. The overall operating frequency is 10MHz. The output voltage is 2V. The load current range is 50mA~500mA. The output ripple is about 4mV. The maximum efficiency of the conversion is 87% when the load current is 500mA, and the efficiency of the conversion is 73% when the load current is 50mA. The overall size of chip is 2.072mm × 2.387mm.
摘要....................................................I
Abstract...............................................II
目錄...................................................IV
圖目錄.................................................VI
表目錄.................................................IX
第一章 緒論..............................................1
1.1 研究背景...........................................1
1.2 研究動機...........................................2
1.3 論文架構...........................................3
第二章 切換式電源穩壓器簡介................................4
2.1 切換式電源穩壓器介紹................................4
2.1.1 切換式降壓穩壓器原理............................5
2.1.2 切換式升壓穩壓器原理............................6
2.1.3 切換式升/降壓穩壓器原理.........................8
2.2 切換式電源穩壓器控制模式介紹.........................9
2.2.1 脈波寬度調變模式................................9
2.2.2 脈波省略調變模式...............................11
2.3 切換式穩壓器導通模式介紹............................13
2.3.1 連續導通模式分析...................................13
2.3.2 非連續導通模式分析.................................18
2.4 同步與非同步切換式降壓穩壓器介紹....................22
2.5 電流控制模式降壓穩壓器介紹..........................23
2.5.1 電流控制模式降壓穩壓器操作原理..............24
2.5.2 次諧波震盪....................................25
2.5.3 斜率補償..................................27
2.6 切換式電源穩壓器重要規格介紹........................30
2.6.1 轉換效率分析..................................30
2.6.2 線性穩壓與負載穩壓調節率....................31
2.6.3 切換式電源穩壓器之暫態響應..................32
第三章 寬負載範圍雙調變模式電流控制降壓穩壓器...............34
3.1 電流控制模式架構分析...............................34
3.1.1 常見電流控制模式電源穩壓器..................34
3.1.2 全電流控制電源穩壓器.......................35
3.2 電流控制模式電源穩壓器小訊號分析與補償方法...........36
3.2.1 電流控制模式電源穩壓器小訊號分析............36
3.2.2 PI型補償器之架構與分析.....................42
3.2.3 P型比例放大器之架構與分析..................44
3.3 雙調變模式切換式電源穩壓器設計......................45
3.4 軟啟動技術........................................47
3.5 被動元件電感與電容的選擇...........................49
第四章 子電路設計與模擬..................................51
4.1 P型比例放大器.....................................51
4.2 能隙參考電壓電路...................................53
4.3 電流感測電路......................................56
4.4 時脈產生器........................................59
4.5 斜波產生器........................................61
4.6 電流比較器........................................64
4.7 RS正反器.........................................65
4.8 非重疊導通與啟動電路…..............................67
4.9 遲滯型電流比較器...................................69
4.10 軟啟動電路.......................................72
4.11 全電流控制模式脈波省略條變電路.....................74
第五章 全電路模擬與佈局結果...............................76
5.1 設計流程..........................................76
5.2 整體佈局..........................................77
5.3 輸出電壓連波模擬..................................78
5.4 線性穩壓調節率模擬.................................80
5.5 負載穩壓調節率模擬.................................83
5.6 效率模擬..........................................87
5.7 規格表...........................................88
5.8 文獻比較表........................................89
第六章 總結與未來展望....................................90
6.1 總結.............................................90
6.2 未來展望..........................................90
參考文獻................................................92
[1] http://www.eefocus.com/analog-power/202178
[2] http://micro.rohm.com/tw/techweb/knowledge/dcdc/s-dcdc/02-s-dcdc/97
[3] S. S. Wang, “Design of a High-Efficiency 20MHz Switching Frequency Current-Mode Buck converter,” Master Thesis, National Taipei University, June 2013.
[4] M. M. Wu, “Design of a Smart Multiple Switch Control Current Mode DC to DC Boost Converter,” Master Thesis, National Taipei University, July 2014.
[5] Ramamurthy Srinivasa and Vanaja Ranja, “Pusle Skipping Modulated Buck Converter – Modeling and Simulation,” IEEE International Symposium on circuits and systems (ISCAS), pp. 59-64, Jan. 2010
[6] Y. L. Kuo, “A High Efficiency Dual- Mode Buck Converter IC for Portable Applications,” IEEE Transactions on Power Electronics, Vol. 23, no. 2, pp. 667-677, March 2008.
[7] Randall Shaffer, “Fundamental of Power Electronics with MATLAB,” Sep. 2008.
[8] Tech Web Powered by ROHM SEMICONDUCTOR, “Technical Information Site of Power Supply IC,” Available at http://micro.rohm.com/tw/techweb/knowledge/
[9] W. L. Hsieh, “High Switching DC-DC Buck Converters in Current Domain Control,” Master Thesis, National Chiao Tung University, 2008
[10] W. H. Ou, “A Current-Mode CMOS DC-DC Buck Converter with Triangular Wave Compensation,” Master Thesis, Tatung University, July 2012.
[11] C. A. Yeh, “Design and Implementation of Digital-Controlled Current Mode Buck Converters,” Master Thesis, National Taipei University of Technology, July 2010.
[12] Liu Cheng and Wu Yu Guang, “Analysis and Design of Slope Compensation in the Peak Current Control,” Microelectronic Institute, Xidian Universiry, Xi’an, Shan Xi.
[13] L. W. Hu, “Design of Fast Transient Response Buck Converter Using Pulse Width Modulation,” Master Thesis, National Dong Hwa University, July 2014.
[14] Y. M. Chen, “Design and Implementation of New On-Chip Current-Mode DC-DC Buck Convert and Low-Dropout Voltage Regulator with Negative Input-Output Voltage,” Master Thesis, National Taipei University of Technology, June 2007
[15] Micheael O’Loughlin, “電源供應補償電路的隱藏限制,” Texas Instruments, Sep. 2004. Available at http://www.ti.com.tw/articles/detail.asp?sno=48&catalog=7
[16] Y. H. Chao, “Stability in Switching Power Supplies: Analysis and Design,” Ta Hwa Institute of Technology.
[17] Van Yang, “Peak current Mode and Continuous Current Mode DC-to-DC Convert Modeling and Loop Compensation Design Considerations,” Analog Devices, Inc, 2016.
[18] 李彥德, “峰值電流式降壓型轉換器回授補償設計,” 立錡科技公司, Apr. 2014.
[19] C. F. Lee and Philip K. T. Mok, “A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 1, Jan 2004.
[20] Werner Höllinger and Manfred Punzenberger, “An Asynchronous 1.8MHz DC/DC Boost Converter Implemented in the Current Domain for Cellular Phone Lighting Management,” Infineon Technologies Austria AG Villach, Austria, 2006.
[21] C. Y. Hsieh, Y. C. Chuang, and K. H. Chen, “A Novel Precise Step-Shaped Soft-Start Technique for Integrated DC-DC Converter,” IEEE Conference Publications, 2007.
[22] Hirokazu Tsujimoto and Tetsuo Tateishi, “Soft starting reference voltage circuit,” US6348833 B1, Feb 19 2002.
[23] Ivan Padilla, Jaime Ramirez-Angulo and Ramon G. Carvajal, “Highly Linear V/I Converter with Programmable Current Mirrors,” IEEE International Symposium on Circuit and Systems (ISCAS), pp. 941-944, May. 2007.
[24] Ka Nang Leung and Philip K. T. Mok, “A Sub-1-V 15-ppm/℃ CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 4, April 2002.
[25] 王清松, 黃粮勻, “用在電源IC的電流感測技術之研究,” 亞東學報第25期, 頁35~40, 五月 2005.
[26] P. J. Cheng, “Design of a Current-Mode Single-Inductor Dual-Output DC-DC Buck Converter with Smart Switch Control,” Master Thesis, National Taiwan Ocean University, Jan 2016.
[27] B. Min and S. Kim, “High Performance CMOS Current Comparator Using Resistive Feedback Network,” Electronics Letters, Vol. 34, no. 22, pp. 2074-2076, 1998.
[28] C. J. Shen, ”Design of a Current-Mode Single-Inductor Dual-Output Buck Regulator With High Switching Frequency,” Master Thesis, National Taiwan Ocean University, Sep 2015.
[29] Zheng Shao Wei, Zhang Bo, Luo Ping, Hou Si Jian, Ye Jing Xin and Ma Xiao, “A Digitally Controlled PWM/PSM Dual-Mode DC/DC Converter,” Journal of Semiconductors, Vol. 32, No. 11, November 2011.
[30] Youngkook Ahn, Hyunseok Nam and Jeongjin Roh, “A 50-Mhz Fully Integrated Low-Switching Buck Converter Using Packaging Inductors,” IEEE Transactions on Power Electronics, Vol. 27, No. 10, October 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top