跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴貫郁
研究生(外文):Lai,Kuan-Yu
論文名稱:以多目標遺傳演算法最佳化手術房排程問題
論文名稱(外文):A Multi-Objective Evolutionary Approach to Optimize Operating Room Scheduling Problems
指導教授:陳建宏陳建宏引用關係
指導教授(外文):Jian-Hung Chen
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:96
中文關鍵詞:手術排程多目標遺傳演算法最佳化手術團隊偏好
外文關鍵詞:Surgical schedulingMulti-objective Genetic Algorithms (MOGAs)OptimizationSurgical team preference
相關次數:
  • 被引用被引用:5
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
手術房是醫院運行成本最昂貴的部分之一,而其成本與手術室排程作業息息相關。本論文將手術室、手術團隊和病人之資訊整合來建構了一個數學最佳化問題模型,其目標是用來規劃一週的手術室行程表。本文採用一個多目標遺傳演算法(MOGAs)來自動指派病人與手術團隊至手術室,並同時最佳化四項成本目標函式:最小化所有手術團隊與手術房使用的成本、滿足手術團隊的偏好與減少病人的等待天數。實驗結果顯示本論文所提出之方式可以提供醫院的決策者一個良好的輔助工具,且間接提升醫療效率與品質,而減少不必要的浪費。
The operating room is one of the most expensive parts of hospital operating costs. The cost of operating room is closely related to the operating room scheduling operations. In this thesis, operating rooms, surgical teams and patient information are integrated and constructed into a mathematical optimization model. The objective of this model is to plan a week of operating room schedule list. Therefore, a multi-objective genetic algorithm (MOGA) is applied to automatically assign the patient and surgical team to the operating room. Our approach can optimize the four cost objective function at the same time: minimize the cost of all the surgical team and operating room, and matching the preferences of the surgical team to reduce patient waiting days. The experimental results show that the proposed approach can provide a good tool for hospital decision-makers, and indirectly improve healthcare efficiency and quality, while reducing unnecessary waste.
目錄
摘要 ......................................................................................................... i
Abstract ................................................................................................. ii
致謝 ....................................................................................................... vi
目錄 ...................................................................................................... vii
表目錄 ................................................................................................... ix
圖目錄 .................................................................................................... x
第一章 緒論........................................................................................... 1
1.1 研究背景、動機與目的 ............................................................................. 1
1.2 研究方法..................................................................................................... 3
1.3 論文架構..................................................................................................... 4
第二章 文獻探討 ................................................................................... 5
2.1 手術房排程問題 ......................................................................................... 5
2.2 遺傳演算法(Genetic Algorithms)介紹 ........................................................ 9
2.2.1 染色體的編碼方式......................................................................... 10
2.2.2 適應函數 ........................................................................................ 11
2.2.3 基因演算法之流程......................................................................... 11
2.3多目標最佳化問題介紹 ............................................................................ 16
2.3.1 多目標問題定義 ............................................................................ 17
2.3.2 多目標適應函數 ............................................................................ 18
2.3.3 多目標演化式演算法之流程 ......................................................... 19
第三章 手術房排程問題模型定義 .................................................... 21
3.1前提假設 ................................................................................................... 21
3.2使用符號與代號 ........................................................................................ 22
3.3決策變數與目標函式 ................................................................................ 24
第四章 多目標遺傳演算法最佳化手術房排程 ................................ 26
4.1手術房排程多目標遺傳演算法 ................................................................. 26
4.2染色體初始化 ............................................................................................ 28
viii
4.3計算適應程度 ............................................................................................ 29
4.4主要概念 ................................................................................................... 31
4.5遺傳運算子 ................................................................................................ 31
第五章 模擬實驗與數據 ................................................................... 35
5.1實驗環境參數設定 .................................................................................... 35
5.2實驗結果與分析 ........................................................................................ 37
5.3排程表編碼輸出 ........................................................................................ 89
第六章 結論及未來展望 ..................................................................... 92
參考文獻 .............................................................................................. 93
[1] G.B. Zekienock- C.S. Zambricki-”The Health Care Crisis:Impact on Surgery in the Community Hospital Setting”- Arch Surg - Vol 136-No.5- pp: 585-591-5001.
[2] J. Viapiano- D.S. Ward-”Operating Room Utilization:The need for Data”-International Anestgesiology Clinics-Vol.38-No.4-pp:127-140-5000.
[3] T. M Wickizer-”Effect of hospital utilization review. on medical expenditures in selected diagnostic areas: An exploratory study”. Am. J. Public Health- Vol.81-No.4: pp:482–484-1991.
[4] D.T.Mangano- ”Perioperative medicine: NHLBI working group deliberations and recommendations”- J. Cardiothorac. Vasc. Anesth. -Vol.18-No.1-pp:1–6-5004.
[5] H.M.Jerrold- E.S. William- P.S. David and G.V. Luis- “The Surgical Scheduling Problem: Current Research and Future Opportunities”- Production and Operations Management Society- Vol.20-Issue:3- pp. 392-405- 2011.
[6] B. Cardoen.- E. Demeulemeester- and J. Belien-” Operating room planning and scheduling: A literature review”- European Journal of Operational Research - vol. 201- No. 3- 2010.
[7] C. Domenico- F. Guerriero- R. Guido-”A multi-objective block scheduling model for the management of surgical operating rooms: New solution approaches via genetic algorithms”-Health Care Management (WHCM)-IEEE Workshop on- pp.1-5- 5006.
[8] K. Deb.- A. Agarwal-S. and T. Meyarivan. “A fast elitist multi-objective genetic algorithm: NSGA-II”- IEEE Transactions on Evolutionary Computation - Vol.6 no.2-pp.182-197- 5002.
[9] F. Hongying.- M. Meskens- and C.Chengbin” An operating theatre planning and scheduling problem in the case of a "block scheduling" strategy” - Service Systems
94
and Service Management- 5006 International Conference on- Vol.1- pp.416-421- 5006.
[10] J.H. Holland- Adaptation in natural and artificial systems- The University of Michigan Press- Ann Arbor- Michigan- 1975.
[11] D.E. Goldberg- Genetic Algorithms in Search Optimization and Machine Learning-Addison-Wesley Longman Press-Massachusetts- Boston- 1989.
[12] D. E. Goldberg- Genetic Algorithms in Search- Optimization- and Machine Learning. Reading- MA: Addison-Wesley Publishing Co.- January 1989- iSBN: 0-201-15767-5.
[13] D. E. Goldberg- B. Korb- and K. Deb- “Messy genetic algorithms: Motivation- analysis- and first results-” Complex Systems- vol. 3- no. 5- pp. 493–530- 1989.
[14] Horn J.- Nafplotis N.- Goldberg D. E.-(1994). A niched Pareto genetic algorithm for multi-objective optimization- Proceedings of the 1st IEEE International Conference Evolutionary Computation- vol. 1- (pp. 82-87).
[15] Srinivas N.- and Deb K. (1994)- Multi-objective optimization using non-dominated sorting in genetic algorithms- Evolutionary Computation- vol. 2- no. 3- (pp. 221-248).
[16] Goldberg D. E.- (1989). Genetic algorithms in search- optimization and machine Learning. Reading- MA: Addison-Wesley.
[17] Zitzler E. and Thiele L.- (1999). Multi-objective evolutionary algorithms: a comparative case study and strengthen Pareto approach- IEEE Transactions on Evolutionary Computation- vol. 3- no. 4- (pp. 257-271).
[18] Hajela P.- Lin C.Y.- (1992). Genetic search strategies in multi-criterion optimal design- Structural Optimization- vol. 4. New York: Springer- (pp. 99-107).
[19] S.Y. Ho- L.S. Shu- and J.H. Chen-“Intelligent Evolutionary Algorithms for Large
95
Parameter Optimization Problems” Journal of IEEE Transaction on Evolutionary Computation- Vol. 8- No. 6-pp. 522-541- Dec. 5004.
[20] 行政院衛生署 http://www.doh.gov.tw/CHT5006/index_populace.aspx
[21] 陳政雲、蔣安國 ,“有效手術房排程以降低醫院成本”,逢甲大學工業管理 研究所碩士論文,5009.
[22] F. Dexter-”A strategy to decide whether to move the last case of the day in an operating room to another empty operating room to decrease overtime labor costs”- Anesthesia and Analgesia- Vol. 91-pp. 925–928.5000.
[23] 華人醫務管理智庫 http://www.tcchm.org.tw/mp.asp?mp=32
[24] 中華民國藥師公會全國聯合會 台灣藥事資訊網 TPIP 藥學雜誌電子報106期 http://www.taiwan-pharma.org.tw/
[25] Wickizer- T. M. 1991. Effect of hospital utilization review on medical expenditures in selected diagnostic areas: An exploratory study. Am. J. Public Health 81(4): 482–484.
[26] Mangano- D. T. 5004. Perioperative medicine: NHLBI working group deliberations and recommendations. J. Cardiothorac. Vasc. Anesth. 18(1): 1–6.
[27] Gabel- R. A.- J. C. Kulli- B. S. Lee- D. G. Spratt- D. S. Ward. 1999. Operating Room Management. Butterworth and Heineman- Stoneham- MA.
[28] D. Whitley and J. Kauth- “GENITOR: A Different Genetic Algorithm”- Proceedings of the Rocky Mountain Conference on Artificial Intelligence- Denver-Co.- pp. 118-130- 1988.
[29] Muruta- T.- Ishibuchi- H.- “MOGA: Multi-Objective Genetic Algorithm-” Proceedings of 2nd IEEE International Conference on Evolutionary Computation- pp. 170-175- 1996.
[30] K. Deb- S. Agrawal- A. Pratap- and T. Meyarivan- “A fast elitist non-dominated
96
sorting genetic algorithm for multi-objective optimization: NSGA-II.”- In Proceedings of the Parallel Problem Solving from Nature VI (PPSN-VI)- pp. 849-858- 5000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top