跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周東川
研究生(外文):Zhou, Dong-Chuan
論文名稱:各向異性海森堡模型的臨界性質
指導教授:陳信雄陳信雄引用關係
指導教授(外文):Chen, Xin-Xiong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:64
語文別:中文
論文頁數:115
中文關鍵詞:海森堡模型臨界性質化學工程化學
外文關鍵詞:HEISENBERG-MODELFERROMAGNETIC-ORDER-PARAMETERSISING-LIMITCUBIC-LATTICESCRITICAL-TEMPERATURESCHEMICAL-ENGINEERINGCHEMISTRY
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
各向異性海森堡模型的臨界性質
周東川
ABSTRACT
///////
We consider the spin-(圖表省略)
anisotropic Heisenberg model described by the Hamiltonian
(圖表省略)
This hamiltonian corresponds to the Ising, Heisenberg and XY models
when(圖表省略)
respectively. Exact high temperature series expansions are derived to
order T-7'' for the second-order fluctuations and to order T-6 for the
fourth-order fluctuations in the (ferromagnetic order parameters) for an
arbitrary lattice, and are derived to T-7 for the secondorder fluctuations
in the antiferromagnetic order parameters for open lattices. These series
are analysed by various methods to give the critical temperatures and the
critical exponents for all values of J∥and j┴.
For a given lattice, when the anisotropy varies from the Ising limit
(J┴=0) to the isotropic limit (│J∥│=│J┴│), the critical temperature
decreases slowly (near zero slop) in the Ising limit and rapidly in the
isotropic limit. Similar behavior is found when the system varies from the
XY limit to the isotropic limit.
For the cubic lattices our estimates of the critical exponents are
consistent with the universality hypothesis. The susceptibility exponents
γ for the cubic lattices and the staggered susceptibility exponents γN
for the bcc and sc lattices have the values γ(圖表省略)γN(圖表省略)
1.38, 1.25, and 1.31 when the system is isotropic (J∥=│J┴│),
Ising-like (│J┴│<│J∥│) and XY-like (│J∥│<│J┴│), respectively.
For the cubic lattices we also find that the gap exponent △4=1.81, 1.56,
ans 1.66 when 0<J┴=J∥,│J┴│<J∥, and │J∥│<J┴ respectively.
For two-dimensional lattices, it is difficult to obtain reliable estimates
of the critical temperature from the series expansions for the
second-order fluctuation, since the series coefficients are irregular in
the isotropic parameters, we find an evidence in favor of a phase
transition in the twodimensional lattices for all positive values of J∥
and J1.
COVER,Abstract,ACKNOWLEDGEMENTS,CONTENTS
Ⅰ. Introduction
Ⅱ. High temperature series expansions
1. General remarks
2. Zero-field susceptibility and the fourth derivative of the gibbs potential
3. Zero-field staggered susceptibility
4. Thermal fluctuation of the magnetization variable
5. Cluster expansion method
Ⅲ. Calculations of series coefficients
Ⅳ. Methods of analysis
1. General remarks
2. Ratio method and its variants
3. Park''s method and Pade'' approximants
Ⅴ. Second-order fluctuations of the magnetization variable and estimates of the critical Parameters
1. General remarks
2. The sedond-order fluctuation in$z
3. The sedond-order fluctuation in$x
4. The sedond-order fluctuation in$sztag
5. The sedond-order fluctuation in$zxtag
Ⅵ. Fourth-order fluctuations
1. The fourth-order fluctuation in$z
2. The fourth-order fluctuation in$x
Ⅶ. Conclusions
Appendix A
References
Figure Captions
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊