跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/15 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸怡妏
研究生(外文):Yi-Wun Lu
論文名稱:精密磨削加工Zerodur之次表面微裂縫分析與研究
論文名稱(外文):Subsurface Damage in Precision Grinding of Zerodur
指導教授:廖運炫
指導教授(外文):Liao Yunn-Shiuan
口試委員:羅勝益趙崇禮
口試日期:2012-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:磨削Zerodur次表面破壞裂縫模型
外文關鍵詞:GrindingZerodurSubsurface damageCrackModel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:776
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
Zerodur是一種是擁有極低的熱膨脹係數的玻璃陶瓷材料,常使用在光學零件及人造衛星之主反射鏡上。本研究目的為探討鑽石砂輪精密磨削Zerodur的特性,由磨削參數、砂輪條件進行討論,了解磨削所造成的次表面微裂縫之機制及影響,並由實驗結果印證理論推導中磨削參數及砂輪條件所造成的次表面破壞,預測加工後的最大次表面微裂縫深度。
研究結果顯示,降低切深或工件速度可有效減少次表面微裂縫,而增加砂輪切線速度亦可減少次表面微裂縫,但到一定速度以上時,因溫度升高,反而使得次表面微裂縫增大;砂輪的條件方面,金屬結合砂輪產生的次表面微裂縫略大於同條件下的樹脂結合砂輪,而砂輪磨粒粒度對次表面微裂縫有決定性的影響,當磨粒粒度越大,造成次表層微裂縫越深,其影響程度遠大於磨削參數中的切深、工件速度及砂輪切線速度。
本研究中當磨削條件為切深5μm、工件速度30mm/min、砂輪切線速度10m/s時,使用金屬砂輪#600的加工結果,最大次表面微裂縫為2.91μm,而若其他條件不變、工件速度改變為10mm/min時,可得更小的次表面微裂縫。本研究的結果與理論公式相符,可在一定磨削條件內使用裂縫長度模型來預測磨削後的最大次表面微裂縫深度,最大誤差為24 %。

Zerodur is a glass-ceramic made by Schott AG. With its very low coefficient of expansion, it can be used to produce mirrors which retain acceptable figures in extremely cold environments such as satellite. The primary subject of this study is to reach the characteristics of subsurface damage (SSD) in diamond wheels precision grinding of Zerodur, and establish the model of SSD in Zerodur using different grinding parameters, e.g. depth of cut, speed, feed rate, and different grinding wheel conditions, e.g. grain size and wheel bond.
The research results about the grinding parameters show that to reduce the depth of cut or work speed would be effective in reducing SSD, and increase the wheel velocity can reduce SSD. However, above a certain wheel velocity, the SSD increases due to high temperature. The results about the wheel conditions show that the metal bond wheel induces slightly larger SSD than the resin bond wheel. Using wheel with larger abrasive size will cause deeper SSD. The abrasive sizes have a decisive impact on the SSD, which is much larger than the grinding parameters. Experiments on #600 metal wheel with the depth of cut 5μm, work speed of 30mm/min and wheel speed of 10 m/s, the subsurface micro-crack is 2.91μm. If all variables remain the same but with work speed of 10mm/min, it will achieve subsurface micro-crack less than 2.91μm.
The results of this study match the theoretical formula, and the empirical formula from curve fitting could predict the subsurface micro-crack depth after grinding within a certain grinding conditions in which the error is less than 24 %.

口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 Zerodur之材料特性 2
1.2.2 Zerodur之大型反射鏡製程 2
1.2.3 磨削Zerodur之研究 5
1.3 研究目的 9
1.4 研究方法 10
1.5 本文架構 10
第二章 相關理論 11
2.1 磨削理論 11
2.1.1 磨削特性 11
2.1.2 磨削幾何分析 12
2.2 裂縫生成機制 15
2.2.1 壓痕破壞理論 15
2.2.2 裂縫尺寸模型 18
2.3 次表面破壞量測方法 22
2.3.1 COM球拋光法 22
2.3.2 斜面拋光 24
2.3.3 磁流變拋光斑點技術 25
2.3.4 分離觀察法 27
2.4 鑽石砂輪規格 28
2.4.1 磨粒種類 28
2.4.2 磨粒粒度 29
2.4.3 結合度 29
2.4.4 集中度 30
2.4.5 結合劑 31
第三章 實驗設備、材料與方法 32
3.1 實驗加工系統 32
3.1.1 次微米超精密加工機 32
3.1.2 機台保護措施 34
3.1.3 帶柄鑽石砂輪 38
3.1.4 治具及黏合劑 38
3.1.5 實驗試片 40
3.2 分析設備 40
3.2.1 形狀量測儀 40
3.2.2 3D雷射共軛焦顯微鏡 42
3.2.3 掃瞄式電子顯微鏡 43
3.3 實驗方法與流程 43
第四章 實驗結果與討論 49
4.1 磨削參數之影響 50
4.1.1 不同磨削深度之影響 50
4.1.2 不同工件速度之影響 55
4.1.3 不同砂輪速度之影響 59
4.2 砂輪組成之影響 62
4.2.1 不同粒度之影響 62
4.2.2 不同結合劑之影響 67
4.3 裂縫長度模型驗證 68
第五章 結論與未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 75

[1] T. Döhring, P. Hartmann, R. Jedamzik, A. Thomas and F. Lentes, "Properties of Zerodur® Mirror Blanks for Extremely Large Telescopes," Proceedings of SPIE, vol. 6148, pp. 61480G.1-61480G.8, 2006.
[2] H. F. Morian and R. Mackh, "Zerodur® for Lightweight Secondary/Tertiary Mirrors," Proceedings of SPIE, vol. 3352, pp. 140-150, 1998.
[3] Schott AG, “ZERODUR® – Zero Expansion Glass Ceramic,” 2012.
[4] M. J. Viens, "Fracture Toughness and Crack Growth of Zerodur," NASA Technical Memorandum - 4185, National Aeronautics and Space Administration, 1990.
[5] Carl Zeiss AG, "Fabrication Technologies for Large Optical Components at Carl Zeiss Jena GmbH," 2010.
[6] Schott AG, "Technical Information TIE-38: Lightweighting of Zerodur ®," Schott Technical Information, 2008.
[7] H. Bach and D. Krause, "Low Thermal Expansion Glass Ceramics," Springer Ltd., pp. 121-235, 2005.
[8] Schott AG, "TIE-44: Processing of ZERODUR® ," Schott Technical Information, 2009.
[9] P. Shore and R. May-Miller, "Production Challenge of the Optical Segments for Extra Large Telescopes," Proceedings of the International Workshop on Extreme Optics and Sensors, vol. 40, pp. 25-30, 2003.
[10] Schott AG, "TIE-33: Design strength of optical glass and Zerodur ®," Schott Technical Information, 2009.
[11] X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans and D.Walker, "Subsurface Damage in Precision Ground ULE and Zerodur Surfaces," Optics Express, vol. 15, pp. 12197-12205, 2007.
[12] X. Tonnellier, P. Shore, P. Morantz and D. Orton, "Surface Quality of a 1m Zerodur® Part Using an Effective Grinding Mode," Proceedings of SPIE, vol. 7102, pp. 71020B.1-71020B.9, 2008.
[13] S. Yin, H. Ohmori, Y. Dai, Y. Uehara, F. Chen and H. Tang, "ELID Grinding Characteristics of Glass-Ceramic Materials," International Journal of Machine Tools and Manufacture, vol. 49, pp. 333-338, 2009.
[14] 郭慶祥、徐書政、林育全、許巍耀,「衛星遙測酬載儀主反射鏡輕量畫家工製程開發”,中國機械工程學會第二十七屆全國學術研討會論文集,民國99年。
[15] W. Lortz, "A Model of the Cutting Mechanism in Grinding," Wear, vol. 53, pp. 115-128, 1979.
[16] R. W. McEachron and E. Ratterman, "Diamond Processing of Structural Ceramics," Ceramic Engineering and Science Proceedings, vol. 7, pp. 1063-1069, 1986.
[17] X. Tonnellier, "Precision Grinding for Rapid Manufacturing of Large Optics," PhD Thesis, Cranfield University, United Kingdom, 2009.
[18] S. Malkin, "Grinding Technology: Theory and Applications of Machining with Abrasives," Ellis Horwood Ltd., 1989.
[19] B. R. Lawn and R. Wilshaw, "Review Indentation Fracture: Principles and Applications, " Journal of Materials Science, vol. 10, pp. 1049-1081, 1975.
[20] H. H. K. Xu, S. Jahanmir and L. K. Ives, "Effect of Grinding on Strength of Tetragonal Zirconia and Zirconia Toughened Alumina," Machining Science and Technology, vol. 1, pp. 9-66, 1997.
[21] I. Inasaki, "Grinding of Hard and Brittle Materials," CIRP Annals - Manufacturing Technology, vol. 36, pp. 463-471, 1987.
[22] B. R. Lawn, E. R. Fuller and S. M. Wiederhorn, "Strength Degradation of Brittle Surfaces: Sharp Indenters," Journal of the American Ceramic Society, vol. 58, pp. 193-197, 1976.
[23] B. R. Lawn, S. M. Wiederhorn and H. H. Johnson, "Strength Degradation of Brittle Surfaces: Blunt Indenters," Journal of the American Ceramic Society, vol. 58, pp. 428-432, 1975.
[24] B. R. Lawn, A. G. Evans and D. B. Marshall, "Elastic/plastic Indentation Damage in Ceramics: the Median/Radial Crack System," Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980.
[25] D. B. Marshall, B. R. Lawn and A. G. Evans, “Elastic/Plastic Indentation Damage in Ceramics: the Lateral Crack System," Journal of the American Ceramic Society, vol. 65, pp. 561-566, 1982.
[26] B. R. Lawn and A. G. Evans, "A Model for Crack Initiation In Elastic/Plastic Indentation Fields," Journal of Materials Science, vol. 12, pp. 2195-2199, 1977.
[27] B. Zhang and T. D. Howes, "Subsurface Evaluation of Ground Ceramics," CIRP Annals - Manufacturing Technology, vol. 44, pp. 263-266, 1995.
[28] J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot and O. Ondeau, "Subsurface Damage Measurement of Ground Fused Silica Parts by HF Etching Techniques," Optics Express, vol. 17, pp. 20448-20456, 2009.
[29] J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala and P. E. Miller, "MRF Applications: Measurement of Process-Dependent Subsurface Damage in Optical Materials Using the MRF Wedge Technique," Proceedings of the SPIE, vol. 5991, pp. 599103.1-599103.11, 2005.
[30] Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini and A. Lindquist, "Effect of Etching and Imaging Mode on the Measurement of Subsurface Damage in Microground Optical Glasses," Ceramic Engineering and Science Proceedings, vol. 77, pp. 3277-3280, 1994.
[31] J. A. Randi, J. C. Lambropoulos and S. D. Jacobs, "Subsurface Damage in some Single Crystalline Optical Materials," Applied Optics, vol. 44, pp. 2241-2249, 2005.
[32] P. P. Hed and D. F. Edwards, "Optical Glass Fabrication Technology 2: Relationship between Surface Roughness and subsurface Damage," Applied Optics, vol. 6, pp. 4677-4680, 1987.
[33] T. Suratwala, L. Wong, P. Miller, M. D. Feit, J Menapace, R. Steele, P. Davis and D. Walmer, "Sub-Surface Mechanical Damage Distributions during Grinding of Fused Silica," Journal of Non-Crystalline Solids, vol. 352, pp. 5601-5617, 2006.
[34] Y. Li, H. Huang, R. Xie, H. Li, Y. Deng, X. Chen, J. Wang, Q. Xu, W. Yang and Y. Guo, "A Method for Evaluating Subsurface Damage in Optical Glass," Optics Express, vol. 18, pp. 17180-17186, 2010.
[35] J. Shen, S. Liu, K. Yi, H. He, J. Shao and Z. Fan, "Subsurface Damage in Optical Substrates," Optik, vol. 116, pp. 288-294, 2005.
[36] S. Agarwal and P. V. Rao, "Experimental Investigation of Surface/Subsurface Damage Formation and Material Removal Mechanisms in SiC Grinding," International Journal of Machine Tools & Manufacture, vol. 48, pp. 698-710, 2008.
[37] H. H. K. Xu and S. Jahanmir, "Simple Technique for Observing Subsurface Damage in Machining of Ceramics," Ceramic Engineering and Science Proceedings, vol. 77, pp. 1388-1390, 1994.
[38] 中國砂輪公司,"精密磨削加工技術概說",民國79年。
[39] 台灣鑽石工業股份有限公司,"鑽石&CBN產品型錄",民國97年。
[40] S. Kalpakjian and S. R. Schmid, "Manufacturing Engineering and Technology, " Prentice Hall, 2006.
[41] 日本九重電器株式會社,伊勢原事業所產品簡介,http://www.kokonoeele.co.jp/c/products.html,民國101年。
[42] 汪師弘,認識傳統砂輪規格,http://tw.myblog.yahoo.com/machining-teaching/,民國99年。
[43] Z. J. Pei, S. R. Billingsley and S. Miura, "Grinding Induced Subsurface Cracks in Silicon Wafers, " International Journal of Machine Tools & Manufacture, vol. 39, pp. 1103-1116, 1999.
[44] J. C. Lambropoulos, "From Abrasive Size to subsurface Damage in Grinding," Optical Fabrication & Testing, OSA Technical Digest 8, pp.17-18, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top