跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宜珍
研究生(外文):Yi-Jen Li
論文名稱:藉中觀生態池探討墾丁珊瑚礁優養與草食作用之氮收支
論文名稱(外文):Top-down vs. bottom-up control on the nitrogen budget of coral reef mesocosms
指導教授:林幸助林幸助引用關係
指導教授(外文):Hsing-Juh Lin
口試委員:樊同雲劉弼仁
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:78
中文關鍵詞:中觀生態池氮收支硝酸氮氨氮
外文關鍵詞:mesocosmnitrogen budgetnitrate nitrogenammonium notrogen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
墾丁珊瑚礁受到陸源營養輸入與過度捕撈的影響,遭受相變的威脅。陸源輸入的營養當中以氮元素對初級生產力的影響最大。為了防止珊瑚礁持續劣化,必須發展氮收支模式,瞭解氮元素在珊瑚礁群集的時空變化,協助管理當局擬定經營管理的策略。本研究引用相關研究數據,以南灣海水背景及人為硝酸氮輸入通量和生態池內草食動物等釋出氨氮,設定為系統輸入氮量。估計珊瑚、海葵與大型藻生物的氮吸收量。結果得知控制組的珊瑚礁生產者,約吸存6 % 輸入中觀生態池的氮量,其中主要氮庫(nitrogen pool)與儲存量大小依次序為珊瑚、浮游藻、網地藻。優養化的珊瑚礁生產者吸存18%之輸入氮量,主要氮庫與儲氮量則是食用松藻、珊瑚、浮游藻。比較優養化的珊瑚礁有無草食者的影響,有草食者共存的生產者約吸存26% 輸入氮量,主要氮庫是總狀蕨藻、法囊藻、珊瑚;移除大型草食者則是食用松藻顯著增加,生產者吸存輸入氮量提高至48 %,主要氮庫是食用松藻、總狀蕨藻、法囊藻。有草食者存在的珊瑚礁其氮再循環率高於無草食者之珊瑚礁。由本研究可知增加硝酸鹽輸入與移除大型草食動物,將改變海洋生物氮庫的大小,可能改變海洋氮元素的生物地質化學循環。建議未來墾丁珊瑚礁的經營管理方略宜著眼於二方面:1.設置海洋保護區,提供大型草食動物免於人類活動干擾的棲息地,避免珊瑚礁遭受相變的威脅2.落實污水處理與管制廢水排放,降低輸入海洋的氮量。


The coral reef in Nanwan Bay undergoes the phase shift because of excessive nutrient loading and overfishing. Among them, nitrogen is an important element to affect the primary production. In order to establish the control model for coral degradation, we have investigated the nitrogen budget which states the nitrogen variation in temporal and space in this study. Almost 6% of system nitrogen was absorbed by the control producers of the coral reef mesocosm. The order of major nitrogen pools and their size rank are coral, phytoplankton and Dictyota cervicornis. However, 18% of system nitrogen was immersed by the producers of eutrophic coral reef mesocosm, and the order of the major nitrogen pools and their size rank were Codium edule, coral and phytoplankton. Compared to the herbivores effect in eutrophic mesocosm, the producers coexist with herbivores uptake 18% nitrogen and the producers without herbivores uptake 48%. The major nitrogen pools of existed herbivores are Caulerpa racemosa, Valonia aegagropila and coral, and the others are Codium edule, Caulerpa racemosa, Valonia aegagropila. The nitrogen recycling rate of coexist-herbivores reef is higher than the one doesn’t have herbivores. Our conclusion is that the nitrogen pools in the marine biota would change overtime if more unnecessary nutrients are loaded and the herbivores are removed from coral reef .The extra nitrogen would interfere the marine nitrogen cycling and further the global nitrogen cycle. In the future, the better coral reef management should be focused on the treatment and drain of the sewage, and the marine protected area for saving the coral reef can avoid phase shift.

總目次
中文摘要 i
Abstract ii
總目次 iii
表目次 v
圖目次 vi
第一章、前言 1
一、珊瑚礁的相變 1
二、氮元素的重要性 1
三、優養下的珊瑚礁與大型藻 2
四、研究目標 3
第二章、材料與方法 4
一、中觀生態池簡介 4
(一)硬體設置與維持 4
(二)生物配置 4
二、實驗設計說明 5
(一)第一次實驗:草食作用與有無營養鹽添加 5
(二)第二次實驗:營養鹽添加與有無草食動物 5
三、氮收支計算 6
(一)硝酸氮收支計算 6
(二)氨氮收支計算 8
四、統計方法 12
五、氮再循環率(Nitrogen recycling rate) 12
第三章、結果 14
一、第一次實驗: 14
(一) 生物量變化 14
(二) GC1 氮收支 14
(三) GC40 氮收支 14
(四) GE1 氮收支 14
(五) GE40 氮收支 15
二、第二次實驗:有無草食動物 15
(一)生物量變化 15
(二) GE II 1 氮收支 15
(三) GE II 58 氮收支 16
(四) E 1氮收支 16
(五) E 58氮收支 16
三、收支模式比較 16
(一)氮庫的比較 16
(二)氮再循環率的比較 17
第四章、討論 18
一、氮庫的改變 18
二、影響藻類吸收營養的因子 18
三、草食作用下的藻類 19
四、珊瑚的營養 20
五、其他動物的變化 21
六、海洋保育 22
(一)設立海洋保護區 22
(二)管制污水排放與放流水建議標準值 22
第五章、結論 24
第六章、參考文獻 25


辛旻桀(2010)短期陸源沉積物對軸孔珊瑚、松藻及海葵競爭的影響。國立中興大學生命科學研究所碩士論文。台中。
何平合、陳昭倫、孟培傑、陳正平、邱郁文、林幸助、張揚褀、劉弼仁(2010)墾丁國家公園海域珊瑚礁長期生態監測計畫。墾丁國家公園管理處委託辦理調查報告。墾丁國家公園管理處。
林幸助、樊同雲、劉弼仁、林學銘(2006)利用中觀生態池探討珊瑚礁相變的機制。行政院國家科學委員會補助專題研究計畫成果報告。國立中興大學生命科學系。
林金榮、陳東本、蔡萬生(2001) 銀塔鐘螺繁殖技術。農政與農情 109:73-75。
林蔚任、鍾佳芸、林幸助(2010)富營養珊瑚礁中觀生態池內氮的收支模式。台灣生物多樣性研究 12(2):187-199。
林學銘(2007)利用中觀生態池探討食用松藻及營養鹽添加對美麗軸孔珊瑚之交互作用。國立中興大學生命科學研究所碩士論文。台中。
邵廣昭(2004)海洋保護區在漁業資源永續利用方面的國際趨勢。國際農業科技新知,23期。
張又仁(2010)以中觀生態池探討草食作用下營養鹽添加對松藻、軸孔珊瑚及海葵交互作用的影響。國立中興大學生命科學研究所碩士論文。台中。
郭王曉瑚、李衍文、劉建華(2000)第二次全國海洋污染基線調查香港特別行政區海域海洋污染基線調查報告。香港特別行政區政府環境保護署。
Anderson DM, Gliber PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4b):704-726
Brandes JA, Devol AH, Deutsch C (2007) New Developments in the Marine Nitrogen Cycle. Chem Rev 107:577-589
Capone DG, Bronk D, Mulholland M, Carpenter EJ. 2008. Nitrogen in the Marine Environment. San Diego:Academic. 954 pp.
Chen CC and Kemp WM (2004) Periphyton communities in experimental marine ecosystems: scaling the effects of removal from container walls. Mar Ecol Prog Ser 271:27-41
Cockcroft AC, Du Preea HH (1989) Nitrogen and energy loss via nonfaecal and faecal excretion in the marine teleost Lithognathus lithognathus. Mar Biol 101:419-425
Collos Y (1998) Nitrate uptake, nitrite release and uptake, and new production estimates. Mar Ecol Prog Ser 171:293-301
D’Elia CF, DeBore JA (1978) Nutritional studies of two red algae II. Kinetics of ammonium and nitrate uptake. J Phycol 14:266-272
DeBore J A, Whoriskey FG (1983) Production and role of hyaline hairs in Cermium rubrum. Mar Biol 77: 229-234
Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321: 926-929
Dosdat A, Servais F, Metailler R, Huelvan C, Desbruyeres E (1996) Comparison of nitrogenous losses in five teleost fish species. Aquaculture 141:107-127
Drew EA (1972) The biology and physiology of alga-invertebrate symbioses II. The density of symbiotic alga cells in a number of herrnatypic corals and alcyonarians from barious depths. J Exp Mar Biol Ecol 9:71-75
Galloway JM, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nigtrogen cascade. BioScience 341(54) 4:341-356
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR and Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153-226
Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pages C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: Effect of feeding light, and ammonium concentrations. Limnol Oceanogr 47:782–790
Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2003) Nitrate uptake in the scleratinian coral Stylophora pistilata. Limnol Oceanogr 48: 2266–2274

Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2006) Uptake of urea by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216-225
Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2008) Uptake of dissolved free amino acid by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 211:860-865
Hay ME, Duffy JE, Pfister CA (1987) Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology 68(6):1567-1580
Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193-212
Harlin, MM (1978) Nitrate uptake by Enteromorpha spp.(Chlorophyceae): Applications to aquaculture systems. Aquaculture 15:373-6
Hanisak MD, Harlin MM (1978) Uptake of inorganic nitrogen by Codium Fragile subsp. Tomentosoides (Chlorophyta) J Phycol 14:450-454
Heisterkamp IM, Schramm A, de Beer D, Stief P (2010) Nitrous oxide production associated with coastal marine invertebrates. Mar Ecol Prog Ser 415:1-9
Hogeh-Guldberg O, Williamson J (1999) Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar Biol 133:561-570
Jackson BC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ and Warner RR. 2001. Historical overfishing and the recent collapse of coastal ecosystem. Science 293: 629-638.
Jompa J, McCook LJ (2002) The effects of nutrients and herbivory on competition between a hard coral (Porites cylindrical) and a brown alga(Lobophora variegate). Limnol Oceanogr 47(2):527-534
Jompa J, McCook LJ (2003) Coral-algal competition: marcoalgae with different properties have different effects on coral. Mar Ecol Prog Ser 258:87-95
Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal bloom on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42(5):1119-1131
Lewis SM (1986) The role of herbivorous fishs in the organization of a Caribbean reef community. Ecol Monogr 56(3):183-200
Littler MM, Taylor PR, Litter DS (1983) Algal resistance to herbivory on a Caribbean Barrier Reef. Coral Reefs 2:111-118
Liu PJ, Lin SM, Fan TY, Meng PJ, Shao KT, Lin HJ (2009 a) Rate of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnol Oceanogr 54(4):1167-1175
Liu PJ, Shao KT, Jan RQ, Fan TY, Wong SL, Hwang JS, Chen JP, Chen CC, Lin HJ (2009 b) A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfish. Mar Env Res 68:106-117
Lin HJ, Wu CY, Kao SJ, Kao WY , Meng PJ (2007) Mapping anthropogenic nitrogen through point sources in coral reef using δ15N in macroalgae. Mar Ecol Prog Ser 335:95-105
Meyer JL, Schultz ET (1985) Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol Oceanogr 30(l):146-156
Meyer KD, Paul MJ (1992) Intraplant variation in secondary metabolite concentration in three species of Caulerpa (Chlorophyta: Caulerpales) and its effects on herbivorous fishes. Mar Ecol Prog Ser 82:249-257
Muscatine L, DElia (1978) The uptake, retention, and release of ammonium by reef corals. Limnol. Oceanogr 23(4):725-734
Mantyka CS, Bellwood DR (2007) Direct evaluation of macroalgal removal by herbivorous coral reef fishes. Coral Reefs 26:435–442
Mukai H, Koike I, Nishihra M, Nojima S (1989) Oxygen consumption and ammonium excretion of mgeasize benthic invertebrate in a tropical seagrass bed. J Exp Mar Bio Ecol 134:101-115
Naldi M, Wheeler PA (2002) 15N Measurement of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): comparison of net nutrient disappearance, release of ammonium and nitrate , and 15N accumulation in algal tissue. J Phycol 38:135-144
Opitz S (1996) Trophic Interaction in Caribbean Coral Reefs . International Center for Living Aquatic Resources Management. Philippines
Piniak GA and Lipschultz F (2004)Effects of nutritional history on nitrogen assimilation in congeneric temperate and tropical scleractinian corals.Mar Bio 145: 1085–1096
Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci USA 107:9683-9688
Runcie JW, Ritchie RJ, Larkum AWD (2003) Uptake kinetics and assimilation of inorganic nitrogen by Catenella nipae and Ulva lactuca. Aquat Bot 76:155-174
River GF, Edmunds PJ (2001) Mechanisms of interaction between macroalgae and scleractinians on a coral reef in Jamaica. J Exp Mar Biol Ecol 261:159–172
Shiomoto A, Sasaki K, Shimoda T, Matsumura S (1994) Kinetic of nitrate and ammonium uptake by the natural population of marine phytoplankton in the sureface water of the Oyashio rgeion during spring and summer. J Oceanogr 50:515-529
Smith JE, Shaw M, Edwards RA, Obura D (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–845
Smith SV (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol Oceanogr 29(6):1149-1160
Sotka EE , Hay ME (2009) Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth. Coral Reef 28:555-568
Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159-161
Tung YH, Dai CF, Fan TY(2005)Comparison of temperature effect on growth and survival of reef corals, Stylophora pistillata and Seriatopora hystrix : a mesocosm study. Proc. 10th Int. Coral Reef Symp, Okinawa, Japan.
Villy C, Pauly D(1993) Trophic Models of Aquatic Ecosystems. International Center for Living Aquatic Resouroes Management. Philippines.
Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human altheration of the global nitrogen Cycle: Sources and Consequences. Ecol Appl 7(3):737-750.
Wang JT, Douglas AE (1999) Essential amino acid synthesis and nitrogen recycling in an alga-invertebrate symbios. Mar Biol 135:219–222.
Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215-225.
Wilkerson FP, Muscatine L (1984) Uptake and assimilation of dissolved inorganic nitrogen by a symbiotic sea anemone. Proc R Soc Lond B 221:71-86.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top