|
[1] W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, (2013). [2] A. Yamasaki, An Overview of CO2 Mitigation Options for Global Warming&;mdash;Emphasizing CO2 Sequestration Options. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 36 (2003) 361-375. [3] E.J. Maginn, What to Do with CO2. The Journal of Physical Chemistry Letters, 1 (2010) 3478-3479. [4] M. Mikkelsen, M. Jorgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy &; Environmental Science, 3 (2010) 43-81. [5] M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions, (2007) 2975-2992. [6] J.P. Smol, Climate Change: A planet in flux. Nature, 483 (2012) S12-S15. [7] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114 (2014) 1709-1742. [8] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20 (2008) 14-27. [9] R.E. Morris, P.S. Wheatley, Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47 (2008) 4966-4981. [10] D. Aaron, C. Tsouris, Separation of CO2 from Flue Gas: A Review. Separation Science and Technology, 40 (2005) 321-348. [11] T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277 (1979) 637-638. [12] S.S. Tan, L. Zou, E. Hu, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today, 115 (2006) 269-273. [13] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition, 52 (2013) 7372-7408. [14] G. Centi, S. Perathoner, Towards Solar Fuels from Water and CO2. ChemSusChem, 3 (2010) 195-208. [15] G. Aydin, I. Karakurt, K. Aydiner, Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy, 38 (2010) 5072-5080. [16] Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257 (2013) 171-186. [17] P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial &; Engineering Chemistry Research, 45 (2006) 2558-2568. [18] M. Tahir, N.S. Amin, Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Conversion and Management, 76 (2013) 194-214. [19] W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science, 330 (2010) 1797-1801. [20] R.D. Richardson, E.J. Holland, B.K. Carpenter, A renewable amine for photochemical reduction of CO2. Nat Chem, 3 (2011) 301-303. [21] W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, J.C.S. Wu, A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Applied Catalysis B: Environmental, 132-133 (2013) 445-451. [22] S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano, 4 (2010) 1259-1278. [23] H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy &; Environmental Science, 5 (2012) 6732-6743. [24] W. Tu, Y. Zhou, Z. Zou, Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, (2014) n/a-n/a. [25] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95 (1995) 69-96. [26] H. Xu, S. Ouyang, P. Li, T. Kako, J. Ye, High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Applied Materials and Interfaces, 5 (2013) 1348-1354. [27] Y. Wang, B. Li, C. Zhang, L. Cui, S. Kang, X. Li, L. Zhou, Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Applied Catalysis B: Environmental, 130-131 (2013) 277-284. [28] J. Nunez, V.A. De La Pena O'Shea, P. Jana, J.M. Coronado, D.P. Serrano, Effect of copper on the performance of ZnO and ZnO1-xN x oxides as CO2 photoreduction catalysts. Catalysis Today, 209 (2013) 21-27. [29] Y. Zhang, Y. Tang, X. Liu, Z. Dong, H.H. Hng, Z. Chen, T.C. Sum, X. Chen, Three-dimensional CdS-titanate composite nanomaterials for enhanced visible-light-driven hydrogen evolution. Small, 9 (2013) 996-1002. [30] R.H. Coridan, M. Shaner, C. Wiggenhorn, B.S. Brunschwig, N.S. Lewis, Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. Journal of Physical Chemistry C, 117 (2013) 6949-6957. [31] P. Praus, O. Kozak, K. Koči, A. Panaček, R. Dvorsky, CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide. Journal of Colloid and Interface Science, 360 (2011) 574-579. [32] D. Finkelstein-Shapiro, S.H. Petrosko, N.M. Dimitrijevic, D. Gosztola, K.A. Gray, T. Rajh, P. Tarakeshwar, V. Mujica, CO2 preactivation in photoinduced reduction via surface functionalization of TiO2 nanoparticles. Journal of Physical Chemistry Letters, 4 (2013) 475-479. [33] B. Michalkiewicz, J. Majewska, G. Kadzioka, K. Bubacz, S. Mozia, A.W. Morawski, Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst. Journal of CO2 Utilization, 5 (2014) 47-52. [34] S. Sing Tan, L. Zou, E. Hu, Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials, 8 (2007) 89-92. [35] D. Liu, Y. Fernandez, O. Ola, S. Mackintosh, M. Maroto-Valer, C.M.A. Parlett, A.F. Lee, J.C.S. Wu, On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications, 25 (2012) 78-82. [36] C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry, 21 (2011) 13452. [37] B. Chai, T. Peng, P. Zeng, J. Mao, Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 21 (2011) 14587. [38] F. Lakadamyali, E. Reisner, Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chemical Communications, 47 (2011) 1695. [39] O.K. Varghese, M. Paulose, T.J. LaTempa, C.A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters, 9 (2009) 731-737. [40] V. Singh, I.J.C. Beltran, J.C. Ribot, P. Nagpal, Photocatalysis Deconstructed: Design of a New Selective Catalyst for Artificial Photosynthesis. Nano Letters, 14 (2014) 597-603. [41] K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53 (1994) 187-190. [42] M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Applied Catalysis B: Environmental, 23 (1999) 169-174. [43] V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy &; Environmental Science, 2 (2009) 745-758. [44] J.C.S. Wu, H.-M. Lin, Photo reduction of CO2 to methanol via TiO2 photocatalyst. International Journal of Photoenergy, 7 (2005). [45] T.W. Woolerton, S. Sheard, E. Pierce, S.W. Ragsdale, F.A. Armstrong, CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy &; Environmental Science, 4 (2011) 2393. [46] T.W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S.W. Ragsdale, F.A. Armstrong, Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light. Journal of the American Chemical Society, 132 (2010) 2132-2133. [47] C.-C. Yang, J. Vernimmen, V. Meynen, P. Cool, G. Mul, Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. Journal of Catalysis, 284 (2011) 1-8. [48] K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, Photocatalytic Reduction of Carbon Dioxide over Ag Cocatalyst-Loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) Using Water as a Reducing Reagent. Journal of the American Chemical Society, 133 (2011) 20863-20868. [49] X. Feng, J.D. Sloppy, T.J. LaTempa, M. Paulose, S. Komarneni, N. Bao, C.A. Grimes, Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: application to the photocatalytic reduction of carbon dioxide. Journal of Materials Chemistry, 21 (2011) 13429-13433. [50] B. Aurian-Blajeni, M. Halmann, J. Manassen, Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Solar Energy, 25 (1980) 165-170. [51] Q.-H. Zhang, W.-D. Han, Y.-J. Hong, J.-G. Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catalysis Today, 148 (2009) 335-340. [52] L. Qiu-ye, Z. Lan-lan, L. Chen, C. Yu-hui, W. Xiao-dong, Y. Jian-jun, Photocatalytic Reduction of CO2 to Methane on Pt/TiO2 Nanosheet Porous Film. Advances in Condensed Matter Physics, 2014 (2014) 6. [53] C. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. The Journal of Physical Chemistry Letters, 1 (2009) 48-53. [54] N. Ulagappan, H. Frei, Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. The Journal of Physical Chemistry A, 104 (2000) 7834-7839. [55] C.-C. Yang, Y.-H. Yu, B. van der Linden, J.C.S. Wu, G. Mul, Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? Journal of the American Chemical Society, 132 (2010) 8398-8406. [56] H. Tsuneoka, K. Teramura, T. Shishido, T. Tanaka, Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. The Journal of Physical Chemistry C, 114 (2010) 8892-8898. [57] H.-a. Park, J.H. Choi, K.M. Choi, D.K. Lee, J.K. Kang, Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. Journal of Materials Chemistry, 22 (2012) 5304-5307. [58] M. Halmann, M. Ulman, B. Aurian-Blajeni, Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy, 31 (1983) 429-431. [59] T.-V. Nguyen, J.C.S. Wu, C.-H. Chiou, Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Communications, 9 (2008) 2073-2076. [60] S. Kuwabata, H. Uchida, A. Ogawa, S. Hirao, H. Yoneyama, Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. Journal of the Chemical Society, Chemical Communications, (1995) 829-830. [61] S. Kaneco, Y. Shimizu, K. Ohta, T. Mizuno, Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry, 115 (1998) 223-226. [62] K. Koči, L. Obalova, L. Matějova, D. Placha, Z. Lacny, J. Jirkovsky, O. Šolcova, Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89 (2009) 494-502. [63] K. Koči, K. Matějů, L. Obalova, S. Krejčikova, Z. Lacny, D. Placha, L. Čapek, A. Hospodkova, O. Šolcova, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 96 (2010) 239-244. [64] L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catalysis, 2 (2012) 1817-1828. [65] P. Pathak, M.J. Meziani, Y. Li, L.T. Cureton, Y.-P. Sun, Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chemical Communications, (2004) 1234-1235. [66] B. Vijayan, N.M. Dimitrijevic, T. Rajh, K. Gray, Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes. The Journal of Physical Chemistry C, 114 (2010) 12994-13002. [67] Q. Liu, Y. Zhou, W. Tu, S. Yan, Z. Zou, Solution-Chemical Route to Generalized Synthesis of Metal Germanate Nanowires with Room-Temperature, Light-Driven Hydrogenation Activity of CO2 into Renewable Hydrocarbon Fuels. Inorganic Chemistry, 53 (2013) 359-364. [68] X. Li, Z. Zhuang, W. Li, H. Pan, Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General, 429–430 (2012) 31-38. [69] N. Zhang, S. Ouyang, P. Li, Y. Zhang, G. Xi, T. Kako, J. Ye, Ion-exchange synthesis of a micro/mesoporous Zn2GeO4 photocatalyst at room temperature for photoreduction of CO2. Chemical Communications, 47 (2011) 2041-2043. [70] F. Solymosi, The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. Journal of Molecular Catalysis, 65 (1991) 337-358. [71] D.H. Gibson, Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? Coordination Chemistry Reviews, 185–186 (1999) 335-355. [72] H.J. Freund, M.W. Roberts, Surface chemistry of carbon dioxide. Surface Science Reports, 25 (1996) 225-273. [73] T.M. Lowry, Valence and the structure of atoms and molecules. By Prof. G. N. Lewis. Pp. 172. American Chemical Monograph Series. New York: The Chemical Catalog Co., Inc., 1923. Price $3. Journal of the Society of Chemical Industry, 43 (1924) 17-17. [74] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (2004) 666-669. [75] K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature, 490 (2012) 192-200. [76] V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy &; Environmental Science, 7 (2014) 1564-1596. [77] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45 (2007) 1558-1565. [78] H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, Y.H. Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 19 (2009) 1987-1992. [79] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat Nano, 4 (2009) 217-224. [80] K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2 (2010) 1015-1024. [81] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chemical Society Reviews, 39 (2010) 228-240. [82] G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.S. Chen, C.-W. Chen, M. Chhowalla, Blue Photoluminescence from Chemically Derived Graphene Oxide. Advanced Materials, 22 (2010) 505-509. [83] G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113 (2009) 15768-15771. [84] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133 (2011) 10878-10884. [85] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41 (2012) 782-796. [86] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters, 10 (2010) 577-583. [87] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 4 (2009) 380-386. [88] Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale, 3 (2011) 3670-3678. [89] Q. Xiang, J. Yu, M. Jaroniec, Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. The Journal of Physical Chemistry C, 115 (2011) 7355-7363. [90] Q. Xiang, J. Yu, M. Jaroniec, Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. Journal of the American Chemical Society, 134 (2012) 6575-6578. [91] T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, H. Teng, Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20 (2010) 2255-2262. [92] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, KisA, Single-layer MoS2 transistors. Nat Nano, 6 (2011) 147-150. [93] K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. The Journal of Physical Chemistry, 86 (1982) 463-467. [94] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters, 105 (2010) 136805. [95] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes. Science, 267 (1995) 222-225. [96] M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Levy, D. Mihailovic, Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes. Science, 292 (2001) 479-481. [97] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. Journal of the American Chemical Society, 130 (2008) 7176-7177. [98] F.A. Frame, F.E. Osterloh, CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light. The Journal of Physical Chemistry C, 114 (2010) 10628-10633. [99] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 133 (2011) 7296-7299. [100] K.H. Hu, X.G. Hu, Y.F. Xu, J.D. Sun, Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange. Journal of Materials Science, 45 (2010) 2640-2648. [101] L. Liu, W. Fan, X. Zhao, H. Sun, P. Li, L. Sun, Surface Dependence of CO2 Adsorption on Zn2GeO4. Langmuir, 28 (2012) 10415-10424. [102] P.-Y. Liou, S.-C. Chen, J.C.S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy &; Environmental Science, 4 (2011) 1487-1494. [103] T. Wang, L. Yang, X. Du, Y. Yang, Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor. Energy Conversion and Management, 65 (2013) 299-307. [104] H.-C. Hsu, I. Shown, H.-Y. Wei, Y.-C. Chang, H.-Y. Du, Y.-G. Lin, C.-A. Tseng, C.-H. Wang, L.-C. Chen, Y.-C. Lin, K.-H. Chen, Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale, 5 (2013) 262. [105] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon, 42 (2004) 2929-2937. [106] W. Alhalasah, R. Holze, Electrochemical bandgaps of a series of poly-3-p-phenylthiophenes. J Solid State Electrochem, 11 (2007) 1605-1612. [107] A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 4 (2010) 2059-2069. [108] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials, 19 (2009) 2577-2583. [109] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov, Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 127 (2005) 5308-5309. [110] V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, Charge Transfer in the MoS2/Carbon Nanotube Composite. The Journal of Physical Chemistry C, 115 (2011) 21199-21204. [111] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 11 (2011) 5111-5116. [112] C.A. Papageorgopoulos, W. Jaegermann, Li intercalation across and along the van der Waals surfaces of MoS2(0001). Surface Science, 338 (1995) 83-93. [113] L.F. Mattheiss, Energy Bands for 2H-NbSe2 and 2H-MoS2. Physical Review Letters, 30 (1973) 784-787. [114] R.V. Kasowski, Band Structure of MoS2 and NbS2. Physical Review Letters, 30 (1973) 1175-1178. [115] L.A. King, W. Zhao, M. Chhowalla, D.J. Riley, G. Eda, Photoelectrochemical properties of chemically exfoliated MoS2. Journal of Materials Chemistry A, 1 (2013) 8935. [116] T. Li, G. Galli, Electronic Properties of MoS2 Nanoparticles. The Journal of Physical Chemistry C, 111 (2007) 16192-16196. [117] J.-M. Yun, Y.-J. Noh, J.-S. Yeo, Y.-J. Go, S.-I. Na, H.-G. Jeong, J. Kim, S. Lee, S.-S. Kim, H.Y. Koo, T.-W. Kim, D.-Y. Kim, Efficient work-function engineering of solution-processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. Journal of Materials Chemistry C, 1 (2013) 3777. [118] O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B.K. Bussmann, J. Maultzsch, M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2. Beilstein Journal of Nanotechnology, 5 (2014) 291-297. [119] P.V. Kumar, M. Bernardi, J.C. Grossman, The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide. ACS Nano, 7 (2013) 1638-1645. [120] E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights. Journal of the American Chemical Society, 132 (2010) 11539-11551.
|