|
1. Stevens, J.F. and C.S. Maier, Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res, 2008. 52(1): p. 7-25. 2. Hamann, K., et al., Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem, 2008. 104(3): p. 708-18. 3. Masliah, E., et al., Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science, 2000. 287(5456): p. 1265-9. 4. Uchida, K., et al., Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem, 1998. 273(26): p. 16058-66. 5. Pegg, A.E., Toxicity of polyamines and their metabolic products. Chem Res Toxicol, 2013. 26(12): p. 1782-800. 6. Kim, Y.S. and T.H. Joh, Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med, 2006. 38(4): p. 333-47. 7. Abraham, K., et al., Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res, 2011. 55(9): p. 1277-90. 8. Carmella, S.G., et al., Quantitation of acrolein-derived (3-hydroxypropyl)mercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: effects of cigarette smoking. Chem Res Toxicol, 2007. 20(7): p. 986-90. 9. Kabesch, M., et al., Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax, 2004. 59(7): p. 569-73. 10. Moretto, N., et al., Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci, 2012. 1259: p. 39-46. 11. Tang, M.S., et al., Acrolein induced DNA damage, mutagenicity and effect on DNA repair. Mol Nutr Food Res, 2011. 55(9): p. 1291-300. 12. Sultana, R., M. Perluigi, and D. Allan Butterfield, Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med, 2013. 62: p. 157-69. 13. Shamoto-Nagai, M., et al., In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J Neural Transm (Vienna), 2007. 114(12): p. 1559-67. 14. Shi, R., T. Rickett, and W. Sun, Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res, 2011. 55(9): p. 1320-31. 15. Srivastava, S., et al., Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis, 2011. 215(2): p. 301-8. 16. Feng, Z., et al., Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A, 2006. 103(42): p. 15404-9. 17. Zarkovic, N., et al., Pathophysiological relevance of aldehydic protein modifications. J Proteomics, 2013. 92: p. 239-47. 18. Hyvelin, J.M., et al., Cellular mechanisms of acrolein-induced alteration in calcium signaling in airway smooth muscle. Toxicol Appl Pharmacol, 2000. 164(2): p. 176-83. 19. Hitomi, J., et al., Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell, 2008. 135(7): p. 1311-23. 20. Boveris, A. and B. Chance, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J, 1973. 134(3): p. 707-16. 21. Biagini, R.E., et al., Inhibition of rat heart mitochondrial electron transport in vitro: implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein. Toxicology, 1990. 62(1): p. 95-106. 22. Luo, J. and R. Shi, Acrolein induces oxidative stress in brain mitochondria. Neurochem Int, 2005. 46(3): p. 243-52. 23. Picklo, M.J. and T.J. Montine, Acrolein inhibits respiration in isolated brain mitochondria. Biochim Biophys Acta, 2001. 1535(2): p. 145-52. 24. Roy, J., et al., Acrolein induces apoptosis through the death receptor pathway in A549 lung cells: role of p53. Can J Physiol Pharmacol, 2010. 88(3): p. 353-68. 25. Roy, J., et al., Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chem Biol Interact, 2009. 181(2): p. 154-67. 26. Suen, D.F., K.L. Norris, and R.J. Youle, Mitochondrial dynamics and apoptosis. Genes Dev, 2008. 22(12): p. 1577-90. 27. Burte, F., et al., Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol, 2015. 11(1): p. 11-24. 28. Chan, D.C., Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 2006. 22: p. 79-99. 29. Ventura-Clapier, R., A. Garnier, and V. Veksler, Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res, 2008. 79(2): p. 208-17. 30. Johri, A. and M.F. Beal, Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther, 2012. 342(3): p. 619-30. 31. Sureshbabu, A. and V. Bhandari, Targeting mitochondrial dysfunction in lung diseases: emphasis on mitophagy. Front Physiol, 2013. 4: p. 384. 32. Janda, E., et al., Defective autophagy in Parkinson's disease: role of oxidative stress. Mol Neurobiol, 2012. 46(3): p. 639-61. 33. Cheng, Y., et al., Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev, 2013. 65(4): p. 1162-97. 34. Redmann, M., et al., Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol, 2014. 53: p. 127-33. 35. Ballweg, K., et al., Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2014. 307(11): p. L895-907. 36. da Silva, A.F., et al., Mitochondria dynamism: of shape, transport and cell migration. Cell Mol Life Sci, 2014. 71(12): p. 2313-24. 37. Peng, J.Y., et al., Automatic morphological subtyping reveals new roles of caspases in mitochondrial dynamics. PLoS Comput Biol, 2011. 7(10): p. e1002212. 38. Andreux, P.A., R.H. Houtkooper, and J. Auwerx, Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov, 2013. 12(6): p. 465-83. 39. Knott, A.B., et al., Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci, 2008. 9(7): p. 505-18. 40. Fleming, A., et al., Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol, 2011. 7(1): p. 9-17. 41. Son, J.H., et al., Neuronal autophagy and neurodegenerative diseases. Exp Mol Med, 2012. 44(2): p. 89-98. 42. Nakahira, K. and A.M. Choi, Autophagy: a potential therapeutic target in lung diseases. Am J Physiol Lung Cell Mol Physiol, 2013. 305(2): p. L93-107. 43. Sun, L., et al., Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion, 2006. 6(3): p. 136-42. 44. Kang, Y.J. and M.D. Enger, Glutathione content and growth in A549 human lung carcinoma cells. Exp Cell Res, 1990. 187(1): p. 177-9. 45. Bein, K. and G.D. Leikauf, Acrolein - a pulmonary hazard. Mol Nutr Food Res, 2011. 55(9): p. 1342-60. 46. Moghe, A., et al., Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci, 2015. 143(2): p. 242-55. 47. Kim, B. and Y.S. Song, Mitochondrial dynamics altered by oxidative stress in cancer. Free Radic Res, 2016: p. 1-16. 48. Wallace, D.C., Diseases of the mitochondrial DNA. Annu Rev Biochem, 1992. 61: p. 1175-212. 49. Zhang, J., Autophagy and Mitophagy in Cellular Damage Control. Redox Biol, 2013. 1(1): p. 19-23. 50. Takamura, A., et al., Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 2011. 25(8): p. 795-800. 51. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672-6. 52. Jung, H.S., et al., Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab, 2008. 8(4): p. 318-24. 53. Denton, D., T. Xu, and S. Kumar, Autophagy as a pro-death pathway. Immunol Cell Biol, 2015. 93(1): p. 35-42. 54. Dalby, K.N., et al., Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy, 2010. 6(3): p. 322-9.
|