跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃裕呈
研究生(外文):Huang, Yu-Cheng
論文名稱:利用同步輻射X光吸收光譜對銀電漿子/二氧化矽核-殼結構奈米顆粒修飾石墨氮化碳電子結構及光催化機制之研究
論文名稱(外文):Electronic Structure and Photocatalytic Mechanism of Graphitic Carbon Nitride Modified with Plasmonic Ag@SiO2 Core-shell Nanoparticles by X-ray Absorption Spectroscopy
指導教授:周武清
指導教授(外文):Chou, Wu-Ching
口試委員:古慶順羅志偉董崇禮陳政龍
口試委員(外文):Ku, Ching-ShunLuo, Chih-WeiDong, Chung-LiChen, Jeng-Lung
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:43
中文關鍵詞:石墨氮化碳局域性表面電漿共振X光吸收光譜光催化水分解光觸媒
外文關鍵詞:Graphitic carbon nitrideLocalized surface plasmon resonanceX-ray absorption spectroscopySolar water splittingphotocatalytic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
近來由於綠色能源的議題受到高度重視,氫燃料電池與光觸媒材料的研究與應用被視為相當重要的課題。過去數十年間研究人員致力於研究高性能之水分解觸媒材料,分別應用於催化產氫反應,其利用光能驅動以化學燃料的形式儲存,滿足乾淨能源的需求。過去研究發現,二氧化矽包覆銀修飾石墨氮化碳,用以作為增強可見光下的光催化太陽能產氫,有良好的光催化效果,並且發現銀金屬奈米結構有特別的侷域表面電漿共振現象,可提供石墨氮化碳在可見光照射下的光催化反應。在本研究中,二氧化矽殼層分離銀電漿子奈米顆粒與石墨氮化碳。透過調整奈米殼層的尺寸大小,銀奈米顆粒中的局域表面電漿共振,誘導的電漿共振能量轉移,和能量損失的螢光共振能量轉移來達平衡,造成電子與原子結構變化與其光催化反應機制。在銀奈米顆粒上包覆二氧化矽殼層,產生銀奈米顆粒和石墨氮化碳之間的奈米間隙,並將其精確調製為8,12,17和21奈米。本研究中電漿共振能量轉移效應與螢光共振能量轉移,在12奈米殼層下呈現的光催化太陽能氫性能平衡良好。本研究利用X光吸收光譜及更進一步的原位X光吸收光譜分析,建構出過去對此類觸媒材料研究中無法得知的電子結構與其在可見光下照射下之光催化反應的微觀機制。可以直接說明電荷重新分佈的情形、導電帶近邊緣的移位以及未佔據狀態的密度的改變產生了改善的光催化活性。我們發現銀奈米顆粒和石墨氮化碳之間的二氧化矽殼層,必需通過限制石墨氮化碳/銀二氧化矽,對石墨氮化碳/銀的光催化活性,來限制螢光共振能量轉移的能量損失。
Graphitic-like carbon nitride (g-C3N4) modified with plasmonic Ag@SiO2 core-shell nanoparticles has attracted considerable interest as a means to enhance photocatalytic solar hydrogen evolution under visible light. High-rate charge carrier recombination is a key factor limiting the photocatalytic activity of g-C3N4. In this study, the SiO2 shell generated a nanogap separating the plasmonic silver nanoparticles and g-C3N4. The plasmon resonance energy transfer (PRET) and energy-loss Förster resonance energy transfer (FRET) induced by the localized surface plasmon resonance (LSPR) in the silver nanoparticles could be perfectly balanced by engineering the size of the nanogap. The LSPR of the Ag nanoparticles could enhance the visible-light photoactivity of graphitic carbon nitride. Nanosized gaps between the plasmonic Ag nanoparticles and g-C3N4 were created and precisely modulated to be 8, 12, 17, and 21 nm by coating SiO2 shells on the surface of Ag nanoparticles. For this study, the PRET effect and the FRET effect were well balanced with the photocatalytic solar hydrogen evolution performance achieved at a nanogap of 12 nm. In situ X-ray absorption spectroscopy (XAS) was employed to investigate the electronic structure of these photocatalysts. The C and N K-edges were conducted to reveal both the density of unoccupied states in the conduction band and how these states changing at different illumination conditions. In situ XAS directly probe the dynamic charge redistribution indicated that the shift of the conduction band edge as well as the modification of the density of the unoccupied states engendered the improved photocatalytic activity. The SiO2 shell between the Ag nanoparticles and g-C3N4 limit the energy loss of the FRET process by limiting the photocatalytic activity of g-C3N4/Ag@ SiO2 to g-C3N4/Ag. These results reveal a strong correlation between the dynamics of the semiconductor structure and its electronic properties, which explains the LSPR effect in the photocatalytic mechanism.
中文摘要 I
Abstract: II
誌謝 III
Index IV
Figure Index V
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
Chapter 2 Literature Review and Theory 6
2.1 Photocatalytic and water splitting 6
2.2 Ag Metal 9
2.3 Surface plasmon resonance 10
2.4 Graphitic Carbon Nitride (g C3N4) 15
Chapter 3 Experimental methods and procedures 17
3.1 Ag@SiO2/g-C3N4 Synthesis 17
3.2 Synchrotron Radiation 19
3.3 Beamlines and experiment set up 22
3.4 X-ray Absorption Spectroscopy 24
Chapter 4 Results and discussion 28
4.1 XAS analysis 28
4.2 In-situ XAS analysis 34
Chapter 5 Conclusion 38
References 39
1. International Energy Agency in World Energy Outlook 2016, http://www.worldenergyoutlook.org, 2016.
2. Key World Energy Statistics. https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf, 2016.
3. F. E. Osterloh and B. A. Parkinson, MRS bulletin 36 (1), 17-22 (2011).
4. S. N. Habisreutinger, L. Schmidt‐Mende and J. K. Stolarczyk, Angewandte Chemie International Edition 52 (29), 7372-7408 (2013).
5. N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences 103 (43), 15729-15735 (2006).
6. T. Hisatomi, J. Kubota and K. Domen, Chemical Society Reviews 43 (22), 7520-7535 (2014).
7. X. Chen, C. Li, M. Grätzel, R. Kostecki and S. S. Mao, Chemical Society Reviews 41 (23), 7909-7937 (2012).
8. U. Sahaym and M. G. Norton, Journal of Materials Science 43 (16), 5395-5429 (2008).
9. C. Zhang, C. Chen, H. Dong, J.-R. Shen, H. Dau and J. Zhao, Science 348 (6235), 690-693 (2015).
10. A. Y. Liu and M. L. Cohen, Science 245 (4920), 841-843 (1989).
11. J. Hong, X. Xia, Y. Wang and R. Xu, Journal of Materials Chemistry 22 (30), 15006-15012 (2012).
12. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nature materials 8 (1), 76-80 (2009).
13. Y. Wang, X. Wang and M. Antonietti, Angewandte Chemie International Edition 51 (1), 68-89 (2012).
14. J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert and X. Wang, Angewandte Chemie 124 (13), 3237-3241 (2012).
15. H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang and D. P. Wilkinson, Chemical Society Reviews 41 (17), 5654-5671 (2012).
16. H. M. Chen and R.-S. Liu, The Journal of Physical Chemistry C 115 (9), 3513-3527 (2011).
17. A. R. Tao, S. Habas and P. Yang, small 4 (3), 310-325 (2008).
18. W.-L. Liu, F.-C. Lin, Y.-C. Yang, C.-H. Huang, S. Gwo, M. H. Huang and J.-S. Huang, Nanoscale 5 (17), 7953-7962 (2013).
19. Z. Liu, W. Hou, P. Pavaskar, M. Aykol and S. B. Cronin, Nano letters 11 (3), 1111-1116 (2011).
20. H. M. Chen, C. F. Hsin, R.-S. Liu, J.-F. Lee and L.-Y. Jang, The Journal of Physical Chemistry C 111 (16), 5909-5914 (2007).
21. K. Matsuda, Y. Ito and Y. Kanemitsu, Applied Physics Letters 92 (21), 211911 (2008).
22. Z. Gueroui and A. Libchaber, Physical Review Letters 93 (16), 166108 (2004).
23. H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L. C. Cheng, H. W. Huang, T. S. Chan, D. W. Huang and R. S. Liu, Small 9 (17), 2926-2936 (2013).
24. J. De Decker, T. Bogaerts, I. Muylaert, S. Delahaye, F. Lynen, V. Van Speybroeck, A. Verberckmoes and P. Van Der Voort, Materials Chemistry and Physics 141 (2), 967-972 (2013).
25. A. Fujishima and K. Honda, nature 238 (5358), 37-38 (1972).
26. K. Parida, N. Sahu, N. Biswal, B. Naik and A. Pradhan, Journal of colloid and interface science 318 (2), 231-237 (2008).
27. Y. Li, X. Cheng, X. Ruan, H. Song, Z. Lou, Z. Ye and L. Zhu, Nano Energy 12, 775-784 (2015).
28. A. Mettenbörger, Y. Gönüllü, T. Fischer, T. Heisig, A. Sasinska, C. Maccato, G. Carraro, C. Sada, D. Barreca and L. Mayrhofer, Nano Energy 19, 415-427 (2016).
29. G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang and J. R. Gong, Advanced materials 25 (28), 3820-3839 (2013).
30. D. B. Ingram and S. Linic, Journal of the American Chemical Society 133 (14), 5202-5205 (2011).
31. J. Chen, S. Shen, P. Guo, M. Wang, J. Su, D. Zhao and L. Guo, Journal of Materials Research 29 (1), 64-70 (2014).
32. R. Ritchie, Physical Review 106 (5), 874 (1957).
33. C. Powell and J. Swan, Physical Review 118 (3), 640 (1960).
34. M. Shanthil, R. Thomas, R. Swathi and K. George Thomas, The journal of physical chemistry letters 3 (11), 1459-1464 (2012).
35. D. Wu, S. Jiang, Y. Cheng and X. Liu, Optics express 21 (1), 1076-1086 (2013).
36. J. Chen, C. L. Dong, Y. Du, D. Zhao and S. Shen, Advanced Materials Interfaces 2 (14) (2015).
37. F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. Pankhurst and K.-P. Martinek, Nature 407 (6805), 691 (2000).
38. S. C. Warren and E. Thimsen, Energy & Environmental Science 5 (1), 5133-5146 (2012).
39. S. Cao and J. Yu, The journal of physical chemistry letters 5 (12), 2101-2107 (2014).
40. X. Wang, S. Blechert and M. Antonietti, Acs Catalysis 2 (8), 1596-1606 (2012).
41. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Chemical communications (43), 4530-4532 (2006).
42. X. Wang, X. Chen, A. Thomas, X. Fu and M. Antonietti, Advanced Materials 21 (16), 1609-1612 (2009).
43. X. Wang, X. Chen, A. Thomas, X. Fu and M. Antonietti, Advanced Materials 21 (16), 1609-1612 (2009).
44. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang and J. Qiu, Scientific reports 3 (2013).
45. J. Chen, S. Shen, P. Guo, M. Wang, J. Su, D. Zhao and L. Guo, Journal of Materials Research 29 (1), 64-70 (2014).
46. D. T. Attwood, P. Naulleau, K. A. Goldberg, E. Tejnil, C. Chang, R. Beguiristain, P. Batson, J. Bokor, E. M. Gullikson and M. Koike, IEEE Journal of Quantum Electronics 35 (5), 709-720 (1999).
47. C. Kunz and K. Codling, Synchrotron Radiation, Techniques and Applications, Spring-Verlag (1979).
48. G. Margaritondo, Introduction to synchrotron radiation. (Oxford University Press, USA, 1988).
49. F. de Groot and A. Kotani, Core Level Spectroscopy Solids, CRC, Taylor & Francis (2008).
50. H. Winick and S. Doniach, Synchrotron radiation research. (Springer Science & Business Media, 2012).
51. H. Winick, Synchrotron Radiation Sources—A Primer. (World Scientific, 1995).
52. http://www.nsrrc.org.tw/
53. G. C. Baldwin and D. W. Kerst, Physics Today 28, 9 (1975).
54. H. Winick, Synchrotron Radiation Sources—A Primer. (World Scientific, 1995).
55. S. C. Chung, C. I. Chen, P. C. Tseng, H. F. Lin, T. E. Dann, Y. F. Song, L. R. Huang, C. C. Chen, J. M. Chuang and K. L. Tsang, Review of scientific instruments 66 (2), 1655-1657 (1995).
56. J. Gomes Ferreira and M. T. Ramos, presented at the NATO Advanced Science Institutes (ASI) Series B, 1988 (unpublished).
57. D. Koningsberger and R. Prins, (1988).
58. B. K. Teo, EXAFS: Basic Principles and Data Analysis, Spring, Berlin (1986).
59. Y. Iwasawa, X-ray absorption fine structure for catalysts and surfaces. (World Scientific, 1996).
60. J. Guo, X-rays in nanoscience: spectroscopy, spectromicroscopy, and scattering techniques. (John Wiley & Sons, 2010).
61. Xu, L. et al. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen. Chemistry of Materials 27, 1612-1621 (2015).
62. L. Xu, W.-Q. Huang, L.-L. Wang, Z.-A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan and G.-F. Huang, Chemistry of Materials 27 (5), 1612-1621 (2015).
63. Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D. S. Su, J. Wang, X. Bao and D. Ma, Angewandte Chemie International Edition 52 (7), 2109-2113 (2013).
64. Y. Zheng, J. Liu, J. Liang, M. Jaroniec and S. Z. Qiao, Energy & Environmental Science 5 (5), 6717-6731 (2012).
65. I. Shimoyama, G. Wu, T. Sekiguchi and Y. Baba, Physical Review B 62 (10), R6053 (2000).
66. J. Ripalda, E. Román, L. Galán, I. Montero, S. Lizzit, A. Baraldi, G. Comelli, G. Paolucci and A. Goldoni, The Journal of chemical physics 118 (8), 3748-3755 (2003).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top