|
1. International Energy Agency in World Energy Outlook 2016, http://www.worldenergyoutlook.org, 2016. 2. Key World Energy Statistics. https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf, 2016. 3. F. E. Osterloh and B. A. Parkinson, MRS bulletin 36 (1), 17-22 (2011). 4. S. N. Habisreutinger, L. Schmidt‐Mende and J. K. Stolarczyk, Angewandte Chemie International Edition 52 (29), 7372-7408 (2013). 5. N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences 103 (43), 15729-15735 (2006). 6. T. Hisatomi, J. Kubota and K. Domen, Chemical Society Reviews 43 (22), 7520-7535 (2014). 7. X. Chen, C. Li, M. Grätzel, R. Kostecki and S. S. Mao, Chemical Society Reviews 41 (23), 7909-7937 (2012). 8. U. Sahaym and M. G. Norton, Journal of Materials Science 43 (16), 5395-5429 (2008). 9. C. Zhang, C. Chen, H. Dong, J.-R. Shen, H. Dau and J. Zhao, Science 348 (6235), 690-693 (2015). 10. A. Y. Liu and M. L. Cohen, Science 245 (4920), 841-843 (1989). 11. J. Hong, X. Xia, Y. Wang and R. Xu, Journal of Materials Chemistry 22 (30), 15006-15012 (2012). 12. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nature materials 8 (1), 76-80 (2009). 13. Y. Wang, X. Wang and M. Antonietti, Angewandte Chemie International Edition 51 (1), 68-89 (2012). 14. J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert and X. Wang, Angewandte Chemie 124 (13), 3237-3241 (2012). 15. H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang and D. P. Wilkinson, Chemical Society Reviews 41 (17), 5654-5671 (2012). 16. H. M. Chen and R.-S. Liu, The Journal of Physical Chemistry C 115 (9), 3513-3527 (2011). 17. A. R. Tao, S. Habas and P. Yang, small 4 (3), 310-325 (2008). 18. W.-L. Liu, F.-C. Lin, Y.-C. Yang, C.-H. Huang, S. Gwo, M. H. Huang and J.-S. Huang, Nanoscale 5 (17), 7953-7962 (2013). 19. Z. Liu, W. Hou, P. Pavaskar, M. Aykol and S. B. Cronin, Nano letters 11 (3), 1111-1116 (2011). 20. H. M. Chen, C. F. Hsin, R.-S. Liu, J.-F. Lee and L.-Y. Jang, The Journal of Physical Chemistry C 111 (16), 5909-5914 (2007). 21. K. Matsuda, Y. Ito and Y. Kanemitsu, Applied Physics Letters 92 (21), 211911 (2008). 22. Z. Gueroui and A. Libchaber, Physical Review Letters 93 (16), 166108 (2004). 23. H. M. Chen, C. K. Chen, M. L. Tseng, P. C. Wu, C. M. Chang, L. C. Cheng, H. W. Huang, T. S. Chan, D. W. Huang and R. S. Liu, Small 9 (17), 2926-2936 (2013). 24. J. De Decker, T. Bogaerts, I. Muylaert, S. Delahaye, F. Lynen, V. Van Speybroeck, A. Verberckmoes and P. Van Der Voort, Materials Chemistry and Physics 141 (2), 967-972 (2013). 25. A. Fujishima and K. Honda, nature 238 (5358), 37-38 (1972). 26. K. Parida, N. Sahu, N. Biswal, B. Naik and A. Pradhan, Journal of colloid and interface science 318 (2), 231-237 (2008). 27. Y. Li, X. Cheng, X. Ruan, H. Song, Z. Lou, Z. Ye and L. Zhu, Nano Energy 12, 775-784 (2015). 28. A. Mettenbörger, Y. Gönüllü, T. Fischer, T. Heisig, A. Sasinska, C. Maccato, G. Carraro, C. Sada, D. Barreca and L. Mayrhofer, Nano Energy 19, 415-427 (2016). 29. G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang and J. R. Gong, Advanced materials 25 (28), 3820-3839 (2013). 30. D. B. Ingram and S. Linic, Journal of the American Chemical Society 133 (14), 5202-5205 (2011). 31. J. Chen, S. Shen, P. Guo, M. Wang, J. Su, D. Zhao and L. Guo, Journal of Materials Research 29 (1), 64-70 (2014). 32. R. Ritchie, Physical Review 106 (5), 874 (1957). 33. C. Powell and J. Swan, Physical Review 118 (3), 640 (1960). 34. M. Shanthil, R. Thomas, R. Swathi and K. George Thomas, The journal of physical chemistry letters 3 (11), 1459-1464 (2012). 35. D. Wu, S. Jiang, Y. Cheng and X. Liu, Optics express 21 (1), 1076-1086 (2013). 36. J. Chen, C. L. Dong, Y. Du, D. Zhao and S. Shen, Advanced Materials Interfaces 2 (14) (2015). 37. F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. Pankhurst and K.-P. Martinek, Nature 407 (6805), 691 (2000). 38. S. C. Warren and E. Thimsen, Energy & Environmental Science 5 (1), 5133-5146 (2012). 39. S. Cao and J. Yu, The journal of physical chemistry letters 5 (12), 2101-2107 (2014). 40. X. Wang, S. Blechert and M. Antonietti, Acs Catalysis 2 (8), 1596-1606 (2012). 41. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Chemical communications (43), 4530-4532 (2006). 42. X. Wang, X. Chen, A. Thomas, X. Fu and M. Antonietti, Advanced Materials 21 (16), 1609-1612 (2009). 43. X. Wang, X. Chen, A. Thomas, X. Fu and M. Antonietti, Advanced Materials 21 (16), 1609-1612 (2009). 44. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang and J. Qiu, Scientific reports 3 (2013). 45. J. Chen, S. Shen, P. Guo, M. Wang, J. Su, D. Zhao and L. Guo, Journal of Materials Research 29 (1), 64-70 (2014). 46. D. T. Attwood, P. Naulleau, K. A. Goldberg, E. Tejnil, C. Chang, R. Beguiristain, P. Batson, J. Bokor, E. M. Gullikson and M. Koike, IEEE Journal of Quantum Electronics 35 (5), 709-720 (1999). 47. C. Kunz and K. Codling, Synchrotron Radiation, Techniques and Applications, Spring-Verlag (1979). 48. G. Margaritondo, Introduction to synchrotron radiation. (Oxford University Press, USA, 1988). 49. F. de Groot and A. Kotani, Core Level Spectroscopy Solids, CRC, Taylor & Francis (2008). 50. H. Winick and S. Doniach, Synchrotron radiation research. (Springer Science & Business Media, 2012). 51. H. Winick, Synchrotron Radiation Sources—A Primer. (World Scientific, 1995). 52. http://www.nsrrc.org.tw/ 53. G. C. Baldwin and D. W. Kerst, Physics Today 28, 9 (1975). 54. H. Winick, Synchrotron Radiation Sources—A Primer. (World Scientific, 1995). 55. S. C. Chung, C. I. Chen, P. C. Tseng, H. F. Lin, T. E. Dann, Y. F. Song, L. R. Huang, C. C. Chen, J. M. Chuang and K. L. Tsang, Review of scientific instruments 66 (2), 1655-1657 (1995). 56. J. Gomes Ferreira and M. T. Ramos, presented at the NATO Advanced Science Institutes (ASI) Series B, 1988 (unpublished). 57. D. Koningsberger and R. Prins, (1988). 58. B. K. Teo, EXAFS: Basic Principles and Data Analysis, Spring, Berlin (1986). 59. Y. Iwasawa, X-ray absorption fine structure for catalysts and surfaces. (World Scientific, 1996). 60. J. Guo, X-rays in nanoscience: spectroscopy, spectromicroscopy, and scattering techniques. (John Wiley & Sons, 2010). 61. Xu, L. et al. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen. Chemistry of Materials 27, 1612-1621 (2015). 62. L. Xu, W.-Q. Huang, L.-L. Wang, Z.-A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan and G.-F. Huang, Chemistry of Materials 27 (5), 1612-1621 (2015). 63. Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D. S. Su, J. Wang, X. Bao and D. Ma, Angewandte Chemie International Edition 52 (7), 2109-2113 (2013). 64. Y. Zheng, J. Liu, J. Liang, M. Jaroniec and S. Z. Qiao, Energy & Environmental Science 5 (5), 6717-6731 (2012). 65. I. Shimoyama, G. Wu, T. Sekiguchi and Y. Baba, Physical Review B 62 (10), R6053 (2000). 66. J. Ripalda, E. Román, L. Galán, I. Montero, S. Lizzit, A. Baraldi, G. Comelli, G. Paolucci and A. Goldoni, The Journal of chemical physics 118 (8), 3748-3755 (2003).
|