跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施順智
研究生(外文):Sun-Chih Shih
論文名稱:雙穩態電磁致動式光開關系統之開發
論文名稱(外文):Development of Optical Switch Using Bi-stable Electro-magnetic Actuators
指導教授:楊燿州楊燿州引用關係
指導教授(外文):Yao-Joe Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:66
中文關鍵詞:光開關光通訊微機電技術氫氧化鉀蝕刻自我對準雙穩態致動器
外文關鍵詞:optical switchoptical communicationMEMSKOH etchingself-alignmentbi-stable actuator
相關次數:
  • 被引用被引用:2
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究發展一個新型的8 × 8光開關系統,這種新型的光開關系統具有低成本、高良率、鏡面自我對準及容易組裝等優點,因此非常適合用來發展高埠數的光開關。本研究利用微機電技術中的「氫氧化鉀濕式非等向性蝕刻」,搭配上定義有切邊對準 方向微鏡面圖形及切邊對準 方向光路圖形的光罩,經過嚴密控制氫氧化鉀蝕刻液濃度及溫度的蝕刻過程,即可在(100)晶圓上製作8 × 8且具有「自我對準」能力的微鏡面陣列。本研究先對磁力進行推導,設計並使用傳統精密機械技術製作出雙穩態電磁致動器,與8 × 8微鏡面陣列組合成8 × 8光開關陣列。最後針對整個8 × 8光開關陣列設計驅動電路及電腦控制程式,使得使用者可以利用電腦、透過USB控制8 × 8光開關陣列。本研究成功使8 × 8光開關系統運作,並針對光開關之光學特性進行量測。
製作完成的光開關,微鏡面表面粗糙度最高為83.3nm,小於目標100nm;光開關之插入損失為-3.7dB;ON-OFF切換時間為5ms,OFF-ON切換時間為8ms;光開關之切換重複性,在100次切換中,插入損失變動量約為0.02dB,在10000次的切換當中,插入損失的變動量可低於0.2dB。以1Hz、10Hz及50Hz(duty cycle分別為25%、5%及0.5%)驅動雙穩態電磁致動器,五分鐘後溫度上升量分別為0.3、4.5及23.1℃。
In this work, a novel hybrid 8 × 8 optical switch system is presented. The hybrid switch comprises a MEMS-based micro-mirror array structure and an actuator array. The micro-mirror array structure, including micro-mirrors, cantilevers, and light-path trenches, can be realized by using KOH anisotropic etching process. Also, the actuator array includes 64 bi-stable solenoid-based actuators. Each micro-mirror on the mirror array is actuated by the bi-stable solenoid-based actuator, and the power consumption of the system can be greatly reduced. We also develop a driving circuit for solenoid-based actuator array and a Window-based program for controlling the optical switch system.
Device characterizations and optical performance are also investigated. The typical surface roughness of the mirrors is about 83.3nm. The switching time is 5ms from ON state to OFF state and 8ms from OFF state to ON state, respectively. The required time for applying voltage on the actuators is less than 5ms for switching between two stable states. The measured insertion loss is about -3.7dB. The insertion loss deviation is about 0.02dB after 100 switching cycles and 0.2dB after 10,000 switching cycles. The temperature raising are 0.3℃, 4.5℃ and 23.1℃ corresponding to the operation frequencies of 1Hz, 10Hz, and 50Hz.
誌謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機及目的 2
1.3. 文獻回顧 3
1.4. 論文架構 11
第二章 理論基礎 12
2.1. 垂直鏡面蝕刻原理 12
2.2. 螺線圈數值模型推導 13
2.3. 永久磁鐵間產生之磁力推導 16
2.4. 雙穩態磁力推導 22
第三章 製程方法及系統設計 25
3.1. 微鏡面製程 25
3.1.1. 氫氧化鉀濕式非等向性蝕刻製程 25
3.1.2. 定義晶圓精確方向 26
3.1.3. 光罩設計 27
3.2. 雙穩態電磁式致動器設計 28
3.2.1. 雙穩態電磁式致動器致動原理 28
3.2.2. 螺線圈製作 30
3.3. 致動器驅動電路系統設計 31
3.3.1. 致動器驅動電路設計 32
3.3.1.1. L293D致動器驅動晶片 34
3.3.1.2. 8051單晶片 35
3.3.2. USB轉接電路 36
3.4. 光開關切換控制程式設計 38
3.5. 光開關系統組裝及量測平台設計 39
3.5.1. 傾斜平台及微鏡面挾持機構設計 40
3.5.2. 垂直移動平台及光準直平台設計 41
3.5.3. 致動器模組設計 42
3.5.4. 美國商規Bellcore 43
第四章 實驗量測與討論 46
4.1. 微鏡面表面粗糙度之量測 46
4.1.1. 表面粗糙度之目標設定 46
4.1.2. 量測結果 48
4.2. 插入損失量測 50
4.2.1. 實驗儀器 50
4.2.1.1. FLS-300光源 50
4.2.1.2. 光功率計(Power meter) 50
4.2.2. 量測結果 51
4.3. 切換時間量測 51
4.3.1. 實驗儀器 51
4.3.1.1. 示波器 51
4.3.2. ON-OFF切換時間量測 52
4.3.3. OFF-ON切換時間量測 52
4.4. 微鏡面切換重複性之量測 53
4.4.1. 實驗儀器 53
4.4.1.1. 資料擷取(DAQ)卡及LabView圖形介面程式 53
4.4.2. 實驗架設 54
4.4.3. 實驗結果 55
4.5. 致動器驅動頻率對溫度之量測 57
4.5.1. 實驗儀器 57
4.5.1.1. 紅外線測溫槍 57
4.5.2. 致動器驅動溫度量測 58
4.6. 致動器驅動力量對微鏡面陣列形變量之預估 59
第五章 結論及未來展望 64
5.1. 結論 64
5.2. 未來展望 66
參考文獻 67
[1]林武郎,“1 × 2、1 × 4與1 × 2微奈米機械式光開關之研製”,國立台灣大學,2006
[2]Y. Fujii, "LOW-CROSSTALK 2X2 OPTICAL SWITCH COMPOSED OF TWISTED NEMATIC LIQUID-CRYSTAL CELLS," IEEE Photonics Technology Letters, vol. 5, pp. 715-718, Jun 1993.
[3]N. A. Riza and S. Yuan, "Low optical interchannel crosstalk, fast switching speed, polarisation independent 2 x 2 fibre optic switch using ferroelectric liquid crystals," Electronics Letters, vol. 34, pp. 1341-1342, Jun 1998.
[4]R. A. Soref, "LOW-CROSS-TALK 2X2 OPTICAL SWITCH," Optics Letters, vol. 6, pp. 275-277, 1981.
[5]C. Vazquez, J. M. S. Pena, and A. L. Aranda, "Broadband 1 x 2 polymer optical fiber switches using nematic liquid crystals," Optics Communications, vol. 224, pp. 57-62, Aug 2003.
[6]M. B. J. Diemeer, "Polymeric thermo-optic space switches for optical communications," Optical Materials, vol. 9, pp. 192-200, Jan 1998.
[7]M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch," IEEE Photonics Technology Letters, vol. 16, pp. 2039-2041, Sep 2004.
[8]Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, "Thermooptic 2x2 asymmetric digital opticat switches with zero-voltage operation state," IEEE Photonics Technology Letters, vol. 16, pp. 446-448, Feb 2004.
[9]J. S. Xia, J. Z. Yu, Z. T. Wang, Z. C. Fan, and S. W. Chen, "Low power 2 x 2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching," Optics Communications, vol. 232, pp. 223-228, Mar 2004.
[10]Y. P. Li, J. Z. Yu, and S. W. Chen, "Rearrangeable nonblocking SOI waveguide thermooptic 4x4 switch matrix with low insertion loss and fast response," IEEE Photonics Technology Letters, vol. 17, pp. 1641-1643, Aug 2005.
[11]F. Sun, J. Z. Yu, and S. W. Chen, "A 2x2 optical switch based on plasma dispersion effect in silicon-on-insulator," Optics Communications, vol. 262, pp. 164-169, Jun 2006.
[12]X. L. Wang, B. Howley, M. Y. Chen, and R. T. Chen, "4 x 4 nonblocking polymeric thermo-optic switch matrix using the total internal reflection effect," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, pp. 997-1000, Sep-Oct 2006.
[13]T. Zhong, X. M. Zhang, A. Q. Liu, J. Li, C. Lu, and D. Y. Tang, "Thermal-optic switch by total internal reflection of micromachined silicon prism," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 348-358, Mar-Apr 2007.
[14]W. M. Zhu, T. Zhong, A. Q. Liu, X. M. Zhang, and M. Yu, "Micromachined optical well structure for thermo-optic switching," Applied Physics Letters, vol. 91, Dec 2007.
[15]K. C. Fan, W. L. Lin, T. T. Chung, H. Y. Wang, and L. P. Wu, "A miniature low cost and high reliability 1 x 2 mechanical optical switch," Journal of Micromechanics and Microengineering, vol. 15, pp. 1565-1570, Aug 2005.
[16]W. L. Lin, K. C. Fan, L. H. Chiang, Y. J. Yang, W. C. Kuo, and T. T. Chung, "A novel micro/nano 1 x 4 mechanical optical switch," Journal of Micromechanics and Microengineering, vol. 16, pp. 1408-1415, Jul 2006.
[17]H. Toshiyoshi and H. Fujita, "Electrostatic micro torsion mirrors for an optical switch matrix," Journal of Microelectromechanical Systems, vol. 5, pp. 231-237, Dec 1996.
[18]C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, "Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications," Journal of Microelectromechanical Systems, vol. 6, pp. 277-285, Sep 1997.
[19]R. T. Chen, H. Nguyen, and M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch," IEEE Photonics Technology Letters, vol. 11, pp. 1396-1398, Nov 1999.
[20]C. Marxer and N. F. de Rooij, "Micro-opto-mechanical 2x2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," Journal of Lightwave Technology, vol. 17, pp. 2-6, Jan 1999.
[21]J. Li, Q. X. Zhang, and A. Q. Liu, "Advanced fiber optical switches using deep RIE (DRIE) fabrication," Sensors and Actuators a-Physical, vol. 102, pp. 286-295, Jan 2003.
[22]K. R. Cochran, L. Fan, and C. L. DeVoe, "Moving reflector type micro optical switch for high-power transfer in a MEMS-based safety and arming system," Journal of Micromechanics and Microengineering, vol. 14, pp. 138-146, Jan 2004.
[23]J. N. Kuo, G. B. Lee, and W. F. Pan, "A high-speed low-voltage double-switch optical crossconnect using stress-induced bending, micromirrors," IEEE Photonics Technology Letters, vol. 16, pp. 2042-2044, Sep 2004.
[24]H. N. Kwon and J. H. Lee, "A micromachined 2x2 optical switch aligned with bevel-ended fibers for low return loss," Journal of Microelectromechanical Systems, vol. 13, pp. 258-263, Apr 2004.
[25]Z. F. Wang, W. Cao, X. C. Shan, J. F. Xu, S. P. Lim, W. Noell, and N. F. de Rooij, "Development of 1x4 MEMS-based optical switch," Sensors and Actuators a-Physical, vol. 114, pp. 80-87, Aug 2004.
[26]G. Wu, A. R. Mirza, S. K. Gamage, L. Ukrainczyk, N. Shashidhar, G. Wruck, and M. Ruda, "Design and use of compact lensed fibers for low cost packaging of optical MEMS components," Journal of Micromechanics and Microengineering, vol. 14, pp. 1367-1375, Oct 2004.
[27]J. N. Kuo, G. B. Lee, and W. F. Pan, "High-performance stress-induced micromachined optical switch with multiswitching function using seesaw structure," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 5030-5034, Jun 2006.
[28]C. C. Tu, K. Fanchiang, and C. H. Liu, "Rotary electrostatic micromirror switches using wafer-scale processing and assembly," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 12, pp. 1099-1108, Oct 2006.
[29]Y. J. Yang, W. C. Kuo, K. C. Fan, and W. L. Lin, "A 1x2 optical fiber switch using a dual-thickness SOI process," Journal of Micromechanics and Microengineering, vol. 17, pp. 1034-1041, May 2007.
[30]M. Hoffmann, P. Kopka, and E. Voges, "All-silicon bistable micromechanical fiber switch based on advanced bulk micromachining," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 46-51, Jan-Feb 1999.
[31]P. Kopka, M. Hoffmann, and E. Voges, "Coupled U-shaped cantilever actuators for 1 x 4 and 2 x 2 optical fibre switches," Journal of Micromechanics and Microengineering, vol. 10, pp. 260-264, Jun 2000.
[32]M. Hoffmann, D. Nusse, and E. Voges, "Electrostatic parallel-plate actuators with large deflections for use in optical moving-fibre switches," Journal of Micromechanics and Microengineering, vol. 11, pp. 323-328, Jul 2001.
[33]M. Hoffmann, P. Kopka, D. Nusse, and E. Voges, "Fibre-optical MEMS switches based on bulk silicon micromachining," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 9, pp. 299-303, May 2003.
[34]W. C. Chen, C. Lee, C. Y. Wu, and W. L. Fang, "A new latched 2 x 2 optical switch using bi-directional movable electrothermal H-beam actuators," Sensors and Actuators a-Physical, vol. 123-24, pp. 563-569, Sep 2005.
[35]K. R. Cochran, L. Fan, and D. L. DeVoe, "High-power optical microswitch based on direct fiber actuation," Sensors and Actuators a-Physical, vol. 119, pp. 512-519, Apr 2005.
[36]C. Lee and C. Y. Wu, "Study of electrothermal V-beam actuators and latched mechanism for optical switch," Journal of Micromechanics and Microengineering, vol. 15, pp. 11-19, Jan 2005.
[37]Y. J. Yang, B. T. Liao, and W. C. Kuo, "A novel 2x2 MEMS optical switch using the split cross-bar design," Journal of Micromechanics and Microengineering, vol. 17, pp. 875-882, May 2007.
[38]C. Gonzalez and S. D. Collins, "Magnetically actuated fiber-optic switch with micromachined positioning stages," Optics Letters, vol. 22, pp. 709-711, May 1997.
[39]P. Helin, M. Mita, T. Bourouina, G. Reyne, and H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," Journal of Lightwave Technology, vol. 18, pp. 1785-1791, Dec 2000.
[40]T. Matsuura, T. Fukami, M. Chabloz, Y. Sakai, S. Izuo, A. Uemura, S. Kaneko, K. Tsutsumi, and K. Hamanaka, "Silicon micro optical switching device with an electromagnetically operated cantilever," Sensors and Actuators a-Physical, vol. 83, pp. 220-224, May 2000.
[41]H. Maekoba, P. Helin, G. Reyne, T. Bourouina, and H. Fujita, "Self-aligned vertical mirror and V-grooves applied to an optical-switch: modeling and optimization of bi-stable operation by electromagnetic actuation," Sensors and Actuators a-Physical, vol. 87, pp. 172-178, Jan 2001.
[42]S. C. Shen, C. T. Pan, and H. P. Chou, "Electromagnetic optical switch for optical network communication," Journal of Magnetism and Magnetic Materials, vol. 239, pp. 610-613, Feb 2002.
[43]C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, "Electromagnetic 2 x 2 MEMS optical switch," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 545-550, May-Jun 2004.
[44]D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, "Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch," Journal of Microelectromechanical Systems, vol. 14, pp. 274-284, Apr 2005.
[45]G. D. J. Su, C. W. Chiu, and F. Jiang, "Vertical micromirrors integrated with electromagnetic microactuators for two-dimensional optical matrix switches," IEEE Photonics Technology Letters, vol. 17, pp. 1860-1862, Sep 2005.
[46]Z. L. Huang and J. Shen, "Latching micromagnetic optical switch," Journal of Microelectromechanical Systems, vol. 15, pp. 16-23, Feb 2006.
[47]O. Powell and H. B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon," Journal of Micromechanics and Microengineering, vol. 11, pp. 217-220, May 2001.
[48]M. McCaig and A. G. Gregg, "Permanent Magnets in Theory and Practice," 2nd edition, John Wiley & Sons, Inc., New York, 1987.
[49]Datasheet of AT89S51, Atmel Corporation.,
http://labdasar.ee.itb.ac.id/lab/EL3006/0708/sem2/D89S51.pdf
[50]Technical reference, TR-NWT-001073: Generic Requirement for fiber optic switches, issue 1, Jan. 1994, Bellcore.
[51]Web site of Wikipedia.
http://en.wikipedia.org/wiki/Settling_time
[52]R. Agarwal, S. Samson, and S. Bhansali, "Fabrication of vertical mirrors using plasma etch and KOH : IPA polishing," Journal of Micromechanics and Microengineering, vol. 17, pp. 26-35, Jan 2007.
[53]范光照、葉易霖,“白光干涉垂直掃描之研究”,中國機械工程學會第二十一屆全國學術研討會論文集,高雄、台灣,2004
[54]J. P. Den Hartog, "Advanced Strength of Materials," New York: McGraw-Hill, 1952.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊