跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/29 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾偉宗
研究生(外文):Wei-Tsung Chung
論文名稱:應用高密度聚乙烯波紋螺旋管於水田魚梯對大鱗副泥鰍遷移之探討
論文名稱(外文):Study on Migration of Paramisgurnus dabryanus through Corrugated High-Density Polyethylene Fishways
指導教授:張文亮張文亮引用關係
指導教授(外文):Wen-Lian Chang
口試委員:張尊國尤少彬李玲玲
口試日期:2015-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:166
中文關鍵詞:大鱗副泥鰍中國泥鰍魚道高密度波浪型聚乙烯管
外文關鍵詞:Paramisgurnus dabryanusChinese loachfishwaycorrugated pipe and HDPE pipe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大鱗副泥鰍 (Paramisgurnus dabryanus),是一種全台灣很常見的淡水魚但與其相關資訊卻十分稀少。他屬於鰍科,居於稻田之中又時常被錯認為泥鰍(Misgurnus anguillicaudatus)。大鱗副泥鰍利用稻田繁殖育苗也從中獲取食物,換句話說,稻田也屬於它們生命週期的一部分。由於現代排水系統的改良,水田、灌溉溝渠和小溪之間的連接已沒了,而魚類種群的數目也開始下降。因此,魚道的出現就是為了重現這些特徵之間的連接。此研究所選用的魚道材料為高密度波浪型聚乙烯管,一種便宜又簡易使用的管子。此實驗的目的是建立魚道以及尋找管道放置角度和排放的最佳組合範例,大鱗副泥鰍為研究的目標種類。在此研究當中,嘗試使用不同管道角度以及排放位置來找出最適當的組合,發現到不同的角度、不同斜率、性別及年齡皆會影響魚遷移地成功率。之後,這個實驗被測試於台灣宜蘭元善區的大湖農田之中,發現無論是在室內的實驗當中或者在田地實驗當中,泥鰍都能夠成功地在上游遷移。

Paramisgurnus dabryanus also known as the Chinese loach (Lin et al. 1991), is a common fresh water fish that can be found all around Taiwan but little information is known from it. It belongs to the Cobitidae family, can be found habiting paddy fields and is usually mixed and confused with the Misgurnus anguillicadatus.
Loaches uses paddy fields to reproduce, nursery ground and obtain food, in other words paddy fields are part of their life cycle. Due to the modern drainage systems, the connection between paddy fields, irrigation ditches and creeks has been lost. As a result of this, the population of fish started to decline. In order to restore back the connection between this features, a fishway is needed. The fishway material chosen for this study was that of corrugated high-density polyethylene pipe or HDPE pipe, a cheap and easy to use kind of pipe. The purpose of this experiment is to provide the best combination of angles and discharges to build a fishway using corrugated HDPE pipe having Paramisgurnus dabryanus as the target species.
During this experiment, fishes where tested in a variety of angles and discharges to see which combination suited them the most. It was found in this experiment that different angles, different slopes, gender and age class had influence on the success percentage. After this, the experiment was taken and tested in the field at Taiwan, Yilan County, Yuan-shan district, Dahu area. The loaches were successful for the upstream migration during the indoor experiment as well as the field experiment.


Table of Contents
摘要 3
Abstract 4
1 Introduction 11
1.1 Fishways 11
1.1.1 Fishway designs 12
1.1.2 Different types of fishways, traditional fishways 13
1.1.3 HDPE pipe fishways 17
1.1.4 Comparison between old fishways and HDPE pipe fishways 19
1.2 Chinese loach (Paramisgurnus dabryanus) 22
1.2.1 Confusion with Misgurnus anguillicaudatus 23
1.2.2 Habitat 24
1.2.3 Uses 25
1.2.4 Features for identification 26
1.2.5 Diet and reproduction 27
1.3 Fishes and paddy fields 28
1.4 Research gap and motivation 30
1.5 Research purpose 31
2. Materials and methods 32
2.1 Indoor experiment design 32
2.2 Study site 38
2.3 Environmental data 42
2.4 Field experiment design 44
2.5 Statistical analysis and other analysis 49
3. Results and discussion 50
3.1 Indoor experiment analysis 50
3.1.1 Three hours analysis 53
3.1.2 Six hours analysis 56
3.2 Field experiment 62
4. Conclusions 71
References 72
Appendix 76

List of Tables

Table 1.1. Pros and cons of the traditional fishways and HDPE pipe fishways. 19
Table 1.2. Price for HDPE pipe in Taiwan. 20
Table 1.3. Difference between Paramisgurnus dabryanus and Misgurnus anguillicaudatus 23
Table 2.1. Water quality from field experiment site, 2015/4/18 47
Table 3.1. Fishes tested for experiment of 3° to 15°. 50
Table 3.2. Fishes tested for experiment of 0°. 51
Table 3.3. GLM analysis for successfully migrated fishes after 6 hours experiment 56
Table 3.4a. Duncan test for adult fishes success percentage. 57
Table 3.4b. Duncan test for juvenile fishes success percentage. 57
Table 3.5a. Duncan test for male fishes success percentage 59
Table 3.5b. Duncan test for female fishes success percentage 59
Table 3.6. Water condition results, 2015/1/27. 62
Table 3.7a. Da-hu field 1 results. 63
Table 3.7b. Da-hu field 2 results. 63
Table 3.7c. Da-hu field 3 results. 63
Table 3.7d. Da-hu field 4 results. 64
Table 3.7e. Chuantsaitou creek results. 64
Table 3.8. Fishes tested for experiment field experiment. 65

List of Figures

Fig 1.1. Ventrical slot fishway 13
Fig 1.2a. Plain denil fishway 14
Fig 1.2b. Steeppass denil fishway 15
Fig 1.3. Weir fishway 15
Fig 1.4. Culvert fishway 16
Fig 1.5. HDPE pipe fishways and an L shape connector. 17
Fig 1.6. Corrugation inside of corrugates HDPE pipes. 20
Fig 1.7. Distribution of Paramisgurnus dabryanus in Taiwan. 22
Fig 1.9. Paramisgurnus dabryanus 26
Fig 1.10a. Male Chinese loach with enlarged thickened pectoral fins. 27
Fig 1.10b. Female Chinese loach without enlarged thickened pectoral fin rays. 27
Fig 2.1a. Indoor experiment design 32
Fig 2.1b. When pump is turned on, fishes migrate from downstream site to the upstream site where food is located 32
Fig 2.2. Weighting fish. 37
Fig 2.3. Measurement of fish length and height. 37
Fig 2.4. Location of study site 38
Fig 2.5. Picture of the paddy field. 39
Fig 2.6. Creek site. 39
Fig 2.7. First drop stage 41
Fig 2.8. Water sample tested with arrows showing discharge direction 42
Fig 2.9. Field division for biological survey 43
Fig 2.10. Downstream of field experiment. 44
Fig 2.11. Upstream of field experiment. 45
Fig 2.12. Fish trap. Dimensions. 45
Fig 2.13. Top view of the fish trap 45
Fig 2.14. Length and slope of each section of the fishway on the field. 47
Fig 2.15. Building of the field experiment 48
Fig 3.1a. Water surface velocity for different angles as discharge increases. 52
Fig 3.1b. Water surface velocity for different discharges as angle increases. 52
Fig 3.2a Migration period of fishes experiment for discharge 100 cm3/s. 53
Fig 3.2b. Migration period of fishes experiment for discharge 316 cm3/s. 53
Fig 3.2c. Migration period of fishes experiment for discharge 653 cm3/s. 54
Fig 3.3. Change of fish average swimming velocity for different discharges as angle increases during 3 hours analysis. 55
Fig 3.5 Field experiment downstream, slope for experiment 3°. 66
Fig 3.6. Field experiment upstream showing fish trap. 67
Fig 3.7. 2015/4/19 successfully migrated fish. 67
Fig 3.8. 2015/4/20 successfully migrated fish. 68



Agostinho, C. S., C. R. Pereira, R. J. de Oliveira, I. S. Freitas, and E. E. Marques. 2007. Movements through a fish ladder: temporal patterns and motivations to move upstream. Neotropical Ichthyology 5:161-167.
Amilhat, E., and K. Lorenzen. 2005. Habitat use, migration pattern and population dynamics of chevron snakehead Channa striata in a rainfed rice farming landscape. Journal of Fish Biology 67:23-34.
Barnard, R. J., Washington, F. Department of, Wildlife, P. Aquatic Habitat Guidelines, L. Washington State, and P. Electronic State. 2013. Water crossing design guidelines.
Borazjani, I., and M. Daghooghi. 2013. The fish tail motion forms an attached leading edge vortex. Proceedings of the Royal Society B-Biological Sciences 280:6.
Borazjani, I., and F. Sotiropoulos. 2009. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial discharge regimes. Journal of Experimental Biology 212:576-592.
Chen, R. S., K. L. Wang, and C. Y. Wu. 2014. A Preliminary Study on the Improvement of the Ecological Corridor in Paddy Fields. Irrigation and Drainage 64:115-123.
Chen, S. K., and C. W. I. Liu. 2002. Analysis of water movement in paddy rice fields (I) experimental studies. Journal of Hydrology 260:206-215.
Clark, S. P., J. S. Toews, and R. Tkach. 2014. Beyond average velocity: modelling velocity distributions in partially filled culverts to support fish passage guidelines. International Journal of River Basin Management 12:101-110.
Clay, C. H. 1995. Design of fishways and other fish facilities. Lewis Publishers, Boca Raton.
Coche, A. G. 1967. Fish culture in rice fields a world-wide synthesis. Hydrobiologia 30:1-44.
DNR. 2010. Michigan Department of Natural Resources.
FAO. Food and Agriculture Organization of the United Nations.
Fasola, M., and X. Ruiz. 1996. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Colonial Waterbirds 19:122-128.
Feng, Y. W., I. Yoshinaga, E. Shiratani, T. Hitomi, and H. Hasebe. 2005. Nutrient balance in a paddy field With a recycling irrigation system. Water Science and Technology 51:151-157.
Frable, B. 2008. Oriental Weatherfish, Misgurnus anguillicaudatus
Fujimoto, Y., Y. Ouchi, T. Hakuba, H. Chiba, and M. Iwata. 2007. Influence of modern irrigation, drainage system and water management on spawning migration of mud loach, Misgurnus anguillicaudatus C. Environmental Biology of Fishes 81:185-194.
Fujioka, M., and S. J. Lane. 1997. The impact of changing irrigation practices in rice fields on frog populations of the Kanto Plain, central Japan. Ecological Research 12:101-108.
Google-maps. Google Maps.
Hu, Y., G. Sun, Y. Fang, and G. Han. 2010. Bioturbation effects of benthic fish on soil microorganism of paddy field. Agricultural Science & Technology - Hunan 11:172-175.
Huang, C. C., M. H. Tsai, W. T. Lin, Y. F. Ho, C. H. Tan, and Y. L. Sung. 2007. Experiences of water transfer from the agricultural to the non-agricultural sector in Taiwan. Paddy and Water Environment 5:271-277.
J.Bohlen. Joerg Bohlen.
Katano, O., K. Hosoya, K. Iguchi, M. Yamaguchi, Y. Aonuma, and S. Kitano. 2003. Species diversity and abundance of freshwater fishes in irrigation ditches around rice fields. Environmental Biology of Fishes 66:107-121.
Katayama, N., D. Saitoh, T. Amano, and T. Miyashita. 2011. Effects of modern drainage systems on the spatial distribution of loach in rice ecosystems. Aquatic Conservation-Marine and Freshwater Ecosystems 21:146-154.
Katopodis, C., I. Freshwater, Canada, F. Department of, Oceans, Central, and R. Arctic. 1992. Introduction to fishway design. Freshwater Institute, Dept. of Fisheries and Oceans - Central and Arctic Region, [Winnipeg, Man.].
Kiritani, K. 2000. Integrated Biodiversity Management in Paddy Fields: Shift of Paradigm From IPM Toward IBM. Integrated Pest Management Reviews Integrated Pest Management Reviews 5:175-183.
Lane, S. J., and M. Fujioka. 1998. The impact of changes in irrigation practices on the distribution of foraging egrets and herons (Ardeidae) in the rice fields of central Japan. Biological Conservation 83:221-230.
Larinier, M. 2009. Biological Factors to be Taken Into Account in the Design of Fishways, the Concept of Obstructions to Upstream migration.
Lin, H.-R., X.-J. Zhou, G. Van Der Kraak, and R. E. Peter. 1991. Effects of gonadotropin-releasing hormone agonists and dopamine antagonists on gonadotropin secretion and ovulation in Chinese loach, Paramisgurnus dabryanus. Aquaculture Aquaculture 95:139-147.
McLeod, A. M., P. Neményi, R. Iowa Institute of Hydraulic, and C. Iowa State Conservation. 1941. An investigation of fishways. State University of Iowa, [Iowa City, Iowa].
Masaki Suzuki, M. M., Akira Goto. 2001. Trial Manufactures and experiments of small-scale fishways to ensure both upward and downward migration of freshwater fishes in the aquatic area with paddy fields. 応用生態工学 4:163-177.
Maruyama, T., I. Hashimoto, K. Murashima, and H. Takimoto. 2008. Evaluation of N and P mass balance in paddy rice culture along Kahokugata Lake, Japan, to assess potential lake pollution. Paddy and Water Environment 6:355-362.
Matsuno, Y., K. Nakamura, T. Masumoto, H. Matsui, T. Kato, and Y. Sato. 2006. Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy and Water Environment 4:189-197.
McLeod, A. M., P. Neményi, R. Iowa Institute of Hydraulic, and C. Iowa State Conservation. 1941. An investigation of fishways. State University of Iowa, [Iowa City, Iowa].
Muller, U. K., J. Smit, E. J. Stamhuis, and J. J. Videler. 2001. How the body contributes to the wake in undulatory fish swimming: Discharge fields of a swimming eel (Anguilla anguilla). Journal of Experimental Biology 204:2751-2762.
Naruse, M., and T. Oishi. 1996. Annual and daily activity rhythms of loaches in an irrigation creek and ditches around paddy fields. Environmental Biology of Fishes 47:93-99.
NIES. National Institute for Environmental Studies.
Natuhara, Y. 2013. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecological Engineering 56:97-106.
Newbold, L. R., and P. S. Kemp. 2015. Influence of corrugated boundary hydrodynamics on the swimming performance and behaviour of juvenile common carp (Cyprinus carpio). Ecological Engineering Ecological Engineering 82:112-120.
Newbold, L. R., P. Karage orgopoulos, and P. S. Kemp. 2014. Corner and sloped culvert baffles improve the upstream passage of adult European eels (Anguilla anguilla). Ecological Engineering 73:752-759.
NIES. National Institute for Environmental Studies.
Nikora, V. I., J. Aberle, B. J. F. Biggs, I. G. Jowett, and J. R. E. Sykes. 2003. Effects of fish size, time-to-fatigue and turbulence on swimming performance: a case study of Galaxias maculatus. Journal of Fish Biology 63:1365-1382.
Noorhosseini-Niyaki, S. A., and F. Bagherzadeh-Lakani. 2013. Ecological and Biological Effects of Fish Farming in Rice Fields Persian Gulf Crop Protection 2:1-7.
Sato Takenobu, M. S., Yoshikawa Natsuki 2008. Study on types of Corrugated pipe suitable for paddy field fishway
Seriously-Fish. Seriously Fish.
Shao, K. T. 2001. The Fish Database of Taiwan.
Su-kyung Kim, J. Yoon, and S.-R. Park1. 2012. Observation of fish movements through artificial fish passes installed in rice paddy fields near a reintroduction site for oriental Storks Ciconia boyciana. 2:51~55.
Takabayashi Kazuyoshi , Y. N. 2005. Technical Development of A Paddy Field Fishway for Symbiosis with A White Stork. Journal of the Agricultural Engineering Society, Japan.
Takeda, I., A. Fukushima, and R. Tanaka. 1997. Non-point pollutant reduction in a paddy-field watershed using a circular irrigation system. Water Research 31:2685-2692.
Yamaguchi, H., and S. Umemoto. 1997. Classification of Paddy Levees in Terms of Plant Resource Complex. J. Weed Sci. Tech Journal of Weed Science and Technology 41:286-294.
Yoon, C. G. 2009. Wise use of paddy rice fields to partially compensate for the loss of natural wetlands. Paddy and Water Environment 7:357-366.
Yu, P. S., Y. C. Wang, T. C. Yang, and C. C. Kuo. 2006. Optimum use of paddy fields for flood mitigation. Journal of the American Water Resources Association 42:375-386.
Watanabe, K. H. T. 1983. Feeding behaviour of the Japanese loach,Misgurnus anguillicaudatus (Cobitididae). J. Ethol. Journal of Ethology 1:86-90.
WFL. Western Federal Lands Highway.
涂敬新. 2006. Study on Characteristics of Hydraulic and Sediment Transport for Modified Larinier Fishway.
廣瀨利雄, 中. 1991. 魚道設計.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 3. 吳珮瑛、劉哲良、蘇明達(2005)。受訪金額在開放選擇條件評估法支付模式的作用:引導或是偏誤。農業經濟半年刊,77,1-42。
2. 12. 林明美(2007a)。以博物館作為都市振興的觸媒:以古根漢畢爾包分館為例。博物館學季刊,21(2),97-115,臺中:國立自然科學博物館。
3. 17. 孫金華、江福松、施淵源、劉振鄉(2003)。臺灣東北角磯釣願付價值分析。農業經濟半年刊,74,63-87。
4. 23. 陳宗玄、陸地(2006)。遊客對導覽解說人員需求與付費意願之研究:以國立自然科學博物館植物園為例。博物館學季刊,20(4),7-25,臺中:國立自然科學博物館。
5. 28. 陳凱俐、林雲雀(2005)。不同旅遊需求函數設定下之遊憩效益比較:以宜蘭縣為例。農業與經濟,34,91-120。
6. 31. 陸雲(1990)。環境資源估價之研究:非市場評估方法。經濟論文,18(1),305-325。
7. 32. 傅祖壇、周濟(1995)。乘坐高速鐵路之支付意願及時間價值:假設評估法之應用。經濟論文叢刊,23(3),259-283。
8. 35. 黃宗煌(1990)。台灣地區國家公園之遊憩效益評估。臺灣銀行季刊,.41(3),282-304。
9. 36. 黃宗煌(1991)。如何評估遊憩效益-旅遊成本法(Ⅰ)。環保與經濟,22,64-67。
10. 37. 黃萬翔,(2001)。從活化文化資產到城鄉生命重現:21世紀城鄉規劃之新思維。北縣文化,70,101-106。臺北:台北縣立文化局。
11. 44. 劉吉川(1998)。黑面琵鷺棲息地遊憩使用之經濟價值。戶外遊憩研究,10(4),19-39。
12. 45. 劉錦添(1990)。淡水河水質改善的經濟效益評估:封閉式假設市場平假髮之應用。經濟論文,18(2),99-128。