|
1.Taguchi G., Introduction to Quality Engineering, Asian Productivity Organisation, Tokyo, 1986. 2.Phadke M.S., Quality Engineering Using Robust Design, Prentice-Hall PTR, Upper Saddle River, NJ,1995. 3.Elsayed E.A. and Chen A., “Optimal levels of process parameters for products with multiple characteristics”, International Journal Production Research, Vol. 31, No. 5, pp. 1117-32, 1993. 4.Su C.T. andTung L.I., “Multi-response robust design by principal components analysis”, Total Quality Management, Vol. 8, No. 6, pp. 409-416, 1997. 5.Tung L.I., Su C.T. and Wang C.H, “The optimization of multi-response problems in the Taguchi method”, International Journal of Quality & Reliability Management, Vol. 14, No. 4, pp. 367-380, 1997. 6.Antony J., “Simultaneous optimisation of multiple quality characteristics in manufacturing processes using Taguchi's quality loss function”, International Journal of Advanced Manufacturing Technology, Vol. 17, No. 2, pp. 134-138, 2001. 7.Singh H. and Kumar P., “Optimizing multi-machining characteristics through Taguchi's approach and utility concept”, Journal of Manufacturing Technology Management, Vol. 17, No. 2, pp. 255-274, 2006. 8.özler C., KocakoÇI.D. and SehirlioGlu A.K., “Using analytic hierarchy process economics in multivariate loss functions”, International Journal of Production Research, Vol. 46, No 4, pp.1121–1135, 2008. 9.Jean A., Liang F. and Chung C.P., “Robust product development for multiple quality characteristics using computer experiments and an optimization technique”, International Journal of Production Research, Vol.46 No.12, pp.3415–3439, 2008. 10.Jiang B.C., Wang C.C., Lu J., Jen C.H. and Fan S.K., “Using simulation techniques to determine optimal operational region for multi-responses problems”, International Journal of Production Research, Vol.47 No.12, pp.3219–3230, 2009. 11.Pan J.N., Pan J. and Lee C.Y., “Finding and optimising the key factors for the multiple-response manufacturing process”, International Journal of Production Research, Vol.47 No.9, pp.2327–2344, 2009. 12.Liao H.C., “Using PCR-TOPSIS to optimise Taguchi’s multi-response problem”, International Journal of Advanced Manufacturing Technology, Vol. 22, No. 9-10, pp. 649-55, 2003. 13.Tarng Y.S. and Yang W.H., “Application of the Taguchi method to the optimisation of the submerged arc welding process”, Materials and Manufacturing Processes, Vol. 13, No. 3, pp. 455–467, 1998. 14.Reddy P.B.S., Nishina K., and Babu A.S., “Unification of robust design and goal programming for multiresponse optimization—a case study”, Quality and Reliability Engineering International, Vol. 13, No. 6, pp. 371–383, 1997. 15.Tong L.I., Chen C.C., and Wang C.H., ”Optimization of multi-response processes using the VIKOR method”, International Journal of Advanced Manufacturing Technology, Vol. 31, pp. 1049-1057, 2006. 16.Tong L.I. and Su C.T., “Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making”, Quality and reliablity engineering international, Vol. 13, No. 1, pp. 25-34, 1997. 17.Lin J.L., Wang K.S., B.H. Yan, and Y.S. Tarng, “Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics”, Journal of Materials Processing Technology, Vol. 102, No. 1-3, pp. 48-55, 2000. 18.Lin C.L., Lin J. L. and Ko T. C., “Optimisation of the EDM Process Based on the Orthogonal Array with Fuzzy Logic and Gey Relational Analysis Method”, International Journal of Advanced Manufacturing Technology, Vol. 19, No. 4, pp. 271-277, 2002. 19.Lu D. and Antony J., “Optimization of multiple responses using a fuzzy-rule based inference system”, International Journal of Production Research, Vol. 40, No. 7, pp. 1613-1625, 2002. 20.Antony J., Anand R.B., Kumar M. and Tiwari M.K., “Multiple response optimization using Taguchi methodology and neuro- fuzzy based model”, Journal of Manufacturing Technology Management, Vol. 17, No. 7, pp. 908-925, 2005. 21.PalS. and Gauri S.K., “Assessing effectiveness of the various performance metrics for multi-responseoptimization using multiple regression”, Computers and Industrial Engineering, Vol. 59, No. 4, pp.976–985, 2010. 22.Zadeh L.A., “Fuzzy Sets”, Information and Control, Vol. 8, pp.338-353, 1965. 23.Park J.H., Cho H.J. and Kwun Y.C., “Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information”, Fuzzy Optimization and Decision Making, Vol.10, No.3, pp.233-253, 2011. 24.Mavi R.K., Farid S. and Jalili A.,” Selecting the Construction Projects Using Fuzzy VIKOR Approach”, Journal of Basic and Applied Scientific Research,Vol.2, No.9, pp.9474-9480, 2012. 25.Roostaee R., Izadikhah M., Lotfi F.H. and Rostamy-Malkhalifeh M.,“A Multi-Criteria Intuitionistic Fuzzy Group Decision Making Method for Supplier Selection with VIKOR Method”, International Journal of Fuzzy System Applications,Vol.2, No.1, pp.1-17, 2012. 26.Wang Z., Li K.W. and Xu J.,“A mathematical programming approach to multi-attribute decision making with interval -valued intuitionistic fuzzy assessment information”,Expert Systems with Applications,Vol.38, No.10, pp.12462-12469, 2011. 27.NayagamV. L.G.,Muralikrishnan S. and Sivaraman G.,” Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets”,Expert Systems with Applications, Vol.38, No.3, pp.1464-1467,2011. 28.Bashiri M. and Hosseininezhad S.J., “Fuzzy Development of Multiple Response Optimization”, Group Decision and Negotiation, Vol.21, No.3, pp.417-438, 2012. 29.Taguchi G., “Performance Analysis Design”, International Journal of ProductionResearch, Vol. 16, pp.521-530, 1978. 30.蘇朝墩,產品穩健設計-田口品質工程方法的介紹和應用,中華民國品質管制學會,1997。 31.蘇朝墩,品質工程,中國民國品質學會,2009。 32.Atanassov K.T., “Intuitionistic fuzzy sets ”,Fuzzy Sets and Systems, Vol. 20, No. 1, pp. 87-96, 1986. 33.Atanassov K.T., Intuitionistic Fuzzy Sets: Theory and Applications, Physica- Verlag, Heidelberg, 1999. 34.Szmidt E. and Kacprzyk J., “Distances between intuitionistic fuzzy sets“, Fuzzy Sets and Systems, Vol. 114, No. 3, pp. 505-518, 2000. 35.De S.K., Biswas R., and A.R. Roy, “Some operations on intuitionistic fuzzy sets”, Fuzzy Sets and Systems, Vol. 114, No. 3, pp. 477-484, 2000. 36.Liu H.W. and Wang G.J., “Multi-criteria decision-making methods based on intuitionistic fuzzy sets”, European Journal of Operational Research, Vol. 179, No. 1, pp. 220-233, 2007. 37.Xu Z.S., “Some Similarity Measures of Intuitionistic Fuzzy Sets and Their Applications to Multiple Attribute Decision Making”, Fuzzy Optimization and Decision Making, Vol. 6, No. 2, pp. 109-121, 2007. 38.Boran F.E., Genc S., Kurt M. and Akay D. ,“A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method”,Expert Systems with Applications, Vol.36, No. 8, pp.11363-11368, 2009. 39.Li D. F., “Multiattribute decision making models and methods using intuitionistic fuzzy sets”, Journal of Computer and System Sciences, Vol. 70, No. 1, pp. 73-85, 2005. 40.Liu H. W. and Wan G. J.G., “Multi-criteria decision-making methods based on intuitionistic fuzzy sets”, European Journal of Operational Research, Vol. 179, No. 1, pp. 220-233, 2007. 41.Xu Z. and Yager R. R., “Dynamic intuitionistic fuzzy multi-attribute decision making”, International Journal of Approximate Reasoning, Vol. 48, No. 1, pp. 246-262, 2008. 42.Xu Z., “A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making”, Group Decision and Negotiation, Vol. 19, No. 1, pp. 57-76, 2009. 43.Wang P., “QoS-aware web services selection with intuitionistic fuzzy set under consumer’s vague perception”, Expert Systems with Applications, Vol. 36, No. 3, pp. 4460-4466, 2009. 44.Li D. F., Wang Y. C., Liu S., and Shan F., “Fractional programming methodology for multi-attribute group decision-making using IFS”,Applied Soft Computing, Vol. 9, No. 1, pp. 219-225, 2009. 45.Hwang C.L. and Yoon K., Multiple Attributes Decision Making Methods and Applications, Springer, New York, 1981. 46.Opricovic S., and Tzeng G. H., “Compromise solution by MCDM methods:A comparative analysis of VIKOR and TOPSIS ”,European Journal of Operational Research, Vol.156,No. 2, pp.445-455, 2004. 47.Zeleny M., Multiple criteria decision making. New York: McGraw-Hill , 1982. 48.Olson D.L., “Comparison of Weights in TOPSIS Models”, Mathematical and Computer Modelling,“ Vol. 40, No.7-8, pp.721-727, 2004. 49.Lin Y. H., Lee P. C., Chang T. P., and Ting H. I. “Multi-attribute group decision making under the condition of uncertain information“, Automation in Construction, Vol.17, No.6, pp.792-797,2008 50.Shyur H. J., and Shih H. S., “A hybrid MCDM model for strategic vendor selection“, Mathematical and Computer Modelling, Vol.44, No.7-8, pp.749-761. 51.Opricovic S., “ Multicriteria optimization of civil engineering systems”, Faculty of Civil Engineering, Belgrade, 1998. 52.Liu H.W., “New similarity measures between Intuitionistic fuzzy sets and between elements“, Mathematical and Computer Modelling, Vol.42, pp.61-70, 2005. 53.Peace G.S., Taguchi Methods: A Hands-On Approach, Addison-Wesley, Massachusetts, USA, 1993.
|