跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴炳均
研究生(外文):Bing-Jiun Lai
論文名稱:積體化可變增益射頻放大器
論文名稱(外文):Integrated Radio Frequency Variable Gain Amplifier
指導教授:吳建華吳建華引用關係
指導教授(外文):Janne-Wha Wu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:130
中文關鍵詞:可變增益低雜訊放大器可變增益放大器驅動放大器寬頻可變增益低雜訊放大器低雜訊放大器
外文關鍵詞:Wideband Variable Gain Low Noise AmplifierVariable Gain Low Noise AmplifierVariable Gain AmplifierDriver AmplifierLNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
作為射頻收發機中接受器第一級電路的低雜訊放大器,其主要弁酮偌ㄗ悃為鷐W益及抑制外來雜訊以避免多餘的干擾影響後級電路。通常可調變增益放大器為自動增益控制電路的一部份,它提供了射頻接收端電路自動增益校準弁遄A因此接收端電路傳送信號可輕易地被後級電路所處理。可調變前端積體電路的基本需求包含必v消耗、增益控制的線性化、動態範圍、線性度以及增益值。
論文第一部份為討論使用TSMC 0.18 μm CMOS 製程技術,應用於WiMAX 系統的可變增益放大器。其中第一段為可調變增益低雜訊放大器,由於差動電路架構具有良好的特性,故此電路採用差動架構來實現;第二段則為可提供高增益調變範圍之可調變增益放大器,此放大器可應用於發射端必v放大器的前級驅動電路,亦可應用於接收端低雜訊放大器之後級放大器。論文第二部份為使用 TSMC 0.35 μm SiGe BiCMOS製程研製高頻寬可調變增益低雜訊放大器,為了提高增益頻寬,此電路應用了二種回授架構方式,並使用達靈頓對電晶體來提高截止頻率。
The first stage of a receiver is typically a low noise amplifier, whose main features are to provide enough gain and minimize the influence to subsequent stages due to the noise generated in itself. In general, variable gain amplifier is employed for automatic gain control, which is used for automatically adjusting gain of the receiver path, so that the received RF signal can be easily processed by subsequent circuits. The requirements for the tuner front-ends are low power consumption, dB-linear, dynamic range, linearity and gain performance.
The first part of this thesis is devoted itself abut the variable gain amplifier which was manufactured by the TSMC 0.18 μm CMOS process. It is applied to WiMAX system. The first one is the variable gain low noise amplifier in which the differential topology being used due to its inherent feature of low interference. The second is the variable gain amplifier, which is addressed on the high tunable gain range. It can be use in the transmitter just before the power amplifier or used in receiver after the low noise amplifier. The second part of this thesis is the wideband variable gain low noise amplifier which was fabricated by a standard TSMC 0.35 μm SiGe BiCMOS technology. In order to improve the bandwidth, two types of feedback are employed, and then using the Darlington pair to double the cutoff frequency.
Contents V
Figure Captions VII
Table Captions XIII
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Organization 5
Chapter 2 Basic Concepts 7
2.1 The Classifications of the Amplifier 8
2.2 Fundamentals 8
2.2.1 Gain 9
2.2.2 Noise 13
2.2.3 Sensitivity 15
2.2.4 Linearity 16
2.3 Power Gain 22
2.3.1 Calculation of Power Gain 25
2.4 Summary 27
Chapter 3 Variable Gain Amplifier Design 29
3.1 WiMAX System 29
3.2 Variable Gain Low Noise Amplifier Designed for Receiver 34
3.2.1 Circuit Topologies of the Variable Gain Low Noise Amplifier 36
3.2.2 Simulation Results 43
3.2.3 Experimental Results 49
3.2.4 Summary 54
3.3 Variable Gain Amplifier Designed for Transmitter 59
3.3.1 Circuit Topologies 60
3.3.2 Simulation Results 63
3.3.3 Summary 68
Chapter 4 Wideband Variable Gain Low Noise Amplifier 71
4.1 Concept 72
4.2 Circuit Description 74
4.2.1 Feedback topology 74
4.2.2 The principle of Wideband Amplifier 76
4.3 General design consideration 84
4.4 Simulation Results 87
4.5 Experimental Results 94
4.6 Summary 101
Chapter 5 Conclusions 103
References 106
[1]"IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems Draft Amendment: Management Information Base Extensions," IEEE Unapproved Draft Std P802.16i/D5, Oct 2007, 2007.
[2]T. Koon Hoo, T. Zhifeng, and Z. Jinyun, "The Mobile Broadband WiMAX Standard [Standards in a Nutshell]," Signal Processing Magazine, IEEE, vol. 24, pp. 144-148, 2007.
[3]D. M. W. Leenaerts, J. v. d. Tang, and C. S. Vaucher, Circuit design for RF transceivers. Boston: Kluwer Academic Publishers, 2001.
[4]U. L. Rohde, D. P. Newkirk, and Knovel (Firm), "RF/microwave circuit design for wireless applications," New York: John Wiley, 2000, pp. xix, 954 p.
[5]L. E. Larson, RF and microwave circuit design for wireless communications. Boston: Artech House, 1996.
[6]G. Gonzalez, Microwave transistor amplifiers : analysis and design. Englewood Cliffs, N.J.: Prentice-Hall, 1984.
[7]B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
[8]B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.
[9]T. K. K. Tsang and M. N. El-Gamal, "Gain controllable very low voltage (⩽ 1 V) 8-9 GHz integrated CMOS LNAs," in Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE, 2002, pp. 205-208.
[10]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
[11]L. Bo, Q. Yang, L. Chor Ping, and G. Choon Lim, "A Survey on Mobile WiMAX [Wireless Broadband Access]," Communications Magazine, IEEE, vol. 45, pp. 70-75, 2007.
[12]P. Iyer, N. Natarajan, M. Venkatachalam, A. Bedekar, E. Gonen, K. Etemad, and P. Taaghol, "All-IP network architecture for mobile WiMAX," in Mobile WiMAX Symposium, 2007. IEEE, 2007, pp. 54-59.
[13]R. Bo, Q. Yi, and C. Hsiao-Hwa, "Adaptive power allocation and call admission control in multiservice WiMAX access networks [Radio Resource Management and Protocol Engineering for IEEE 802.16]," Wireless Communications, IEEE [see also IEEE Personal Communications], vol. 14, pp. 14-19, 2007.
[14]L. Kejie, Q. Yi, and C. Hsiao-Hwa, "WIRELESS BROADBAND ACCESS: WIMAX AND BEYOND - A Secure and Service-Oriented Network Control Framework for WiMAX Networks," Communications Magazine, IEEE, vol. 45, pp. 124-130, 2007.
[15]S. Horrich, S. E. Elayoubi, and S. Ben Jemaa, "NET 01-2 - On the Impact of Mobility and Joint RRM Policies on a Cooperative WiMAX/HSDPA Network," in Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE, 2008, pp. 2027-2032.
[16]K. A. Noordin and G. Markarian, "Cross-Layer Optimization Architecture for WiMAX Systems," in Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, 2007, pp. 1-4.
[17]O. A. Alim and A. El Naggary, "Performance of MIMO antenna techniques on IEEE 802.16E," in Information and Communications Technology, 2007. ICICT 2007. ITI 5th International Conference on, 2007, pp. 289-295.
[18]T. K. K. Tsang and M. N. El-Gamal, "Gain and frequency controllable sub-1 V 5.8 GHz CMOS LNA," in Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, 2002, pp. IV-795-IV-798 vol.4.
[19]F. Zhang and P. Kinget, "Low power programmable-gain CMOS distributed LNA for ultra-wideband applications," in VLSI Circuits, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 78-81.
[20]F. Carrara and G. Palmisano, "High-dynamic-range VGA with temperature compensation and linear-in-dB gain control," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 2019-2024, 2005.
[21]H. Wei, S. Seunghyun, C. Bongryul, and K. Jae-Whui, "Design of a 1.8 V high frequency CMOS variable gain amplifier with a novel dB-linear gain structure," in Circuits and Systems, 2004. MWSCAS ''04. The 2004 47th Midwest Symposium on, 2004, pp. I-125-8 vol.1.
[22]M. van Heijningen, M. Badaroglu, S. Donnay, G. G. E. Gielen, and H. J. De Man, "Substrate noise generation in complex digital systems: efficient modeling and simulation methodology and experimental verification," Solid-State Circuits, IEEE Journal of, vol. 37, pp. 1065-1072, 2002.
[23]G. Retz and P. Burton, "A CMOS up-conversion receiver front-end for cable and terrestrial DTV applications," in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 442-506 vol.1.
[24]K. Tae Wook and K. Bonkee, "A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 945-953, 2006.
[25]H. Samavati, H. R. Rategh, and T. H. Lee, "A 5-GHz CMOS wireless LAN receiver front end," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 765-772, 2000.
[26]K. Tae Wook, K. Bonkee, and L. Kwyro, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 223-229, 2004.
[27]K. Tae Wook, K. Bonkee, C. Youngho, A. B. K. Boeun Kim, and A. K. L. Kwyro Lee, "A 13 dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications," in VLSI Circuits, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 344-347.
[28]F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, and R. Castello, "A 2-dB noise figure 900-MHz differential CMOS LNA," Solid-State Circuits, IEEE Journal of, vol. 36, pp. 1444-1452, 2001.
[29]N. Kyung-suc and P. Byeong-ha, "A 50-MHz dB-linear programmable-gain amplifier with 98-dB dynamic range and 2-dB gain steps for 3 V power supply," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 11, pp. 218-223, 2003.
[30]T. W. Pan and A. A. Abidi, "A 50 dB variable gain amplifier using parasitic bipolar transistors in CMOS," Solid-State Circuits, IEEE Journal of, vol. 24, pp. 951-961, 1989.
[31]A. Motamed, C. Hwang, and M. Ismail, "CMOS exponential current-to-voltage converter," Electronics Letters, vol. 33, pp. 998-1000, 1997.
[32]T. Chih-Chun and L. Shen-Iuan, "Low-voltage CMOS low-noise amplifier using planar-interleaved transformer," Electronics Letters, vol. 37, pp. 497-498, 2001.
[33]S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. A. L. D. G. Leeper, "Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity," Proceedings of the IEEE, vol. 92, pp. 295-311, 2004.
[34]R. A. Scholtz, R. Weaver, E. Homier, J. A. L. J. Lee, P. A. H. P. Hilmes, A. A. T. A. Taha, and R. A. W. R. Wilson, "UWB radio deployment challenges," in Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on, 2000, pp. 620-625 vol.1.
[35]Y. Aoki, M. Fujii, S. Ohkubo, S. A. Y. S. Yoshida, T. A. N. T. Niwa, Y. A. M. Y. Miyoshi, H. A. D. H. Dodo, N. A. G. N. Goto, and H. A. H. H. Hida, "A 1.4-dB-NF variable-gain LNA with continuous control for 2-GHz-band mobile phones using InGaP emitter HBTs," in Microwave Symposium Digest, 2001 IEEE MTT-S International, 2001, pp. 289-292 vol.1.
[36]L. Jongsoo and J. D. Cressler, "A 3-10 GHz SiGe resistive feedback low noise amplifier for UWB applications," in Radio Frequency integrated Circuits (RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE, 2005, pp. 545-548.
[37]K. W. Kobayashi, A. K. Oki, L. T. Tran, and D. C. Streit, "Ultra-low dc power GaAs HBT S- and C-band low noise amplifiers for portable wireless applications," Microwave Theory and Techniques, IEEE Transactions on, vol. 43, pp. 3055-3061, 1995.
[38]A. S. Sedra and K. C. Smith, Microelectronic circuits, 5th ed. New York: Oxford University Press, 2004.
[39]L. Jongsoo and J. D. Cressler, "Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 1262-1268, 2006.
[40]C. Ming-Chou, L. Shey-Shi, M. Chin-Chun, Y. Shih-An, Y. Shih-Cheng, and C. Yi-Jen, "Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops," Solid-State Circuits, IEEE Journal of, vol. 37, pp. 694-701, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top