|
[1]"IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems Draft Amendment: Management Information Base Extensions," IEEE Unapproved Draft Std P802.16i/D5, Oct 2007, 2007. [2]T. Koon Hoo, T. Zhifeng, and Z. Jinyun, "The Mobile Broadband WiMAX Standard [Standards in a Nutshell]," Signal Processing Magazine, IEEE, vol. 24, pp. 144-148, 2007. [3]D. M. W. Leenaerts, J. v. d. Tang, and C. S. Vaucher, Circuit design for RF transceivers. Boston: Kluwer Academic Publishers, 2001. [4]U. L. Rohde, D. P. Newkirk, and Knovel (Firm), "RF/microwave circuit design for wireless applications," New York: John Wiley, 2000, pp. xix, 954 p. [5]L. E. Larson, RF and microwave circuit design for wireless communications. Boston: Artech House, 1996. [6]G. Gonzalez, Microwave transistor amplifiers : analysis and design. Englewood Cliffs, N.J.: Prentice-Hall, 1984. [7]B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998. [8]B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001. [9]T. K. K. Tsang and M. N. El-Gamal, "Gain controllable very low voltage (⩽ 1 V) 8-9 GHz integrated CMOS LNAs," in Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE, 2002, pp. 205-208. [10]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004. [11]L. Bo, Q. Yang, L. Chor Ping, and G. Choon Lim, "A Survey on Mobile WiMAX [Wireless Broadband Access]," Communications Magazine, IEEE, vol. 45, pp. 70-75, 2007. [12]P. Iyer, N. Natarajan, M. Venkatachalam, A. Bedekar, E. Gonen, K. Etemad, and P. Taaghol, "All-IP network architecture for mobile WiMAX," in Mobile WiMAX Symposium, 2007. IEEE, 2007, pp. 54-59. [13]R. Bo, Q. Yi, and C. Hsiao-Hwa, "Adaptive power allocation and call admission control in multiservice WiMAX access networks [Radio Resource Management and Protocol Engineering for IEEE 802.16]," Wireless Communications, IEEE [see also IEEE Personal Communications], vol. 14, pp. 14-19, 2007. [14]L. Kejie, Q. Yi, and C. Hsiao-Hwa, "WIRELESS BROADBAND ACCESS: WIMAX AND BEYOND - A Secure and Service-Oriented Network Control Framework for WiMAX Networks," Communications Magazine, IEEE, vol. 45, pp. 124-130, 2007. [15]S. Horrich, S. E. Elayoubi, and S. Ben Jemaa, "NET 01-2 - On the Impact of Mobility and Joint RRM Policies on a Cooperative WiMAX/HSDPA Network," in Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE, 2008, pp. 2027-2032. [16]K. A. Noordin and G. Markarian, "Cross-Layer Optimization Architecture for WiMAX Systems," in Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on, 2007, pp. 1-4. [17]O. A. Alim and A. El Naggary, "Performance of MIMO antenna techniques on IEEE 802.16E," in Information and Communications Technology, 2007. ICICT 2007. ITI 5th International Conference on, 2007, pp. 289-295. [18]T. K. K. Tsang and M. N. El-Gamal, "Gain and frequency controllable sub-1 V 5.8 GHz CMOS LNA," in Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, 2002, pp. IV-795-IV-798 vol.4. [19]F. Zhang and P. Kinget, "Low power programmable-gain CMOS distributed LNA for ultra-wideband applications," in VLSI Circuits, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 78-81. [20]F. Carrara and G. Palmisano, "High-dynamic-range VGA with temperature compensation and linear-in-dB gain control," Solid-State Circuits, IEEE Journal of, vol. 40, pp. 2019-2024, 2005. [21]H. Wei, S. Seunghyun, C. Bongryul, and K. Jae-Whui, "Design of a 1.8 V high frequency CMOS variable gain amplifier with a novel dB-linear gain structure," in Circuits and Systems, 2004. MWSCAS ''04. The 2004 47th Midwest Symposium on, 2004, pp. I-125-8 vol.1. [22]M. van Heijningen, M. Badaroglu, S. Donnay, G. G. E. Gielen, and H. J. De Man, "Substrate noise generation in complex digital systems: efficient modeling and simulation methodology and experimental verification," Solid-State Circuits, IEEE Journal of, vol. 37, pp. 1065-1072, 2002. [23]G. Retz and P. Burton, "A CMOS up-conversion receiver front-end for cable and terrestrial DTV applications," in Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003, pp. 442-506 vol.1. [24]K. Tae Wook and K. Bonkee, "A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 945-953, 2006. [25]H. Samavati, H. R. Rategh, and T. H. Lee, "A 5-GHz CMOS wireless LAN receiver front end," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 765-772, 2000. [26]K. Tae Wook, K. Bonkee, and L. Kwyro, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 223-229, 2004. [27]K. Tae Wook, K. Bonkee, C. Youngho, A. B. K. Boeun Kim, and A. K. L. Kwyro Lee, "A 13 dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications," in VLSI Circuits, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 344-347. [28]F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, and R. Castello, "A 2-dB noise figure 900-MHz differential CMOS LNA," Solid-State Circuits, IEEE Journal of, vol. 36, pp. 1444-1452, 2001. [29]N. Kyung-suc and P. Byeong-ha, "A 50-MHz dB-linear programmable-gain amplifier with 98-dB dynamic range and 2-dB gain steps for 3 V power supply," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 11, pp. 218-223, 2003. [30]T. W. Pan and A. A. Abidi, "A 50 dB variable gain amplifier using parasitic bipolar transistors in CMOS," Solid-State Circuits, IEEE Journal of, vol. 24, pp. 951-961, 1989. [31]A. Motamed, C. Hwang, and M. Ismail, "CMOS exponential current-to-voltage converter," Electronics Letters, vol. 33, pp. 998-1000, 1997. [32]T. Chih-Chun and L. Shen-Iuan, "Low-voltage CMOS low-noise amplifier using planar-interleaved transformer," Electronics Letters, vol. 37, pp. 497-498, 2001. [33]S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. A. L. D. G. Leeper, "Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity," Proceedings of the IEEE, vol. 92, pp. 295-311, 2004. [34]R. A. Scholtz, R. Weaver, E. Homier, J. A. L. J. Lee, P. A. H. P. Hilmes, A. A. T. A. Taha, and R. A. W. R. Wilson, "UWB radio deployment challenges," in Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on, 2000, pp. 620-625 vol.1. [35]Y. Aoki, M. Fujii, S. Ohkubo, S. A. Y. S. Yoshida, T. A. N. T. Niwa, Y. A. M. Y. Miyoshi, H. A. D. H. Dodo, N. A. G. N. Goto, and H. A. H. H. Hida, "A 1.4-dB-NF variable-gain LNA with continuous control for 2-GHz-band mobile phones using InGaP emitter HBTs," in Microwave Symposium Digest, 2001 IEEE MTT-S International, 2001, pp. 289-292 vol.1. [36]L. Jongsoo and J. D. Cressler, "A 3-10 GHz SiGe resistive feedback low noise amplifier for UWB applications," in Radio Frequency integrated Circuits (RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE, 2005, pp. 545-548. [37]K. W. Kobayashi, A. K. Oki, L. T. Tran, and D. C. Streit, "Ultra-low dc power GaAs HBT S- and C-band low noise amplifiers for portable wireless applications," Microwave Theory and Techniques, IEEE Transactions on, vol. 43, pp. 3055-3061, 1995. [38]A. S. Sedra and K. C. Smith, Microelectronic circuits, 5th ed. New York: Oxford University Press, 2004. [39]L. Jongsoo and J. D. Cressler, "Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology," Microwave Theory and Techniques, IEEE Transactions on, vol. 54, pp. 1262-1268, 2006. [40]C. Ming-Chou, L. Shey-Shi, M. Chin-Chun, Y. Shih-An, Y. Shih-Cheng, and C. Yi-Jen, "Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops," Solid-State Circuits, IEEE Journal of, vol. 37, pp. 694-701, 2002.
|