跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭秀姿
研究生(外文):Hsiu-Tzu Cheng
論文名稱:細菌演算法求解投資組合最佳化問題
論文名稱(外文):Bacterial Foraging Optimization for Portfolio Optimizations
指導教授:高有成高有成引用關係
指導教授(外文):Yucheng Kao
學位類別:碩士
校院名稱:大同大學
系所名稱:資訊經營學系(所)
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:90
中文關鍵詞:投資組合最佳化細菌覓食演算法群體智慧
外文關鍵詞:Portfolio optimizationBacterialforaging optimizationEfficient frontier
相關次數:
  • 被引用被引用:3
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
在投資組合問題中,除了要考慮收益外,同時須考慮風險因素,所以投資組合問題是屬於一種多目標的問題。當可供選擇的股票標的數量愈多時,問題的複雜度就更高,其所需要的求解時間也相對的更多。因此,本研究希望藉由有效的啟發式演算法在合理的求解時間下,求得效益較佳的投資組合。近年來有學者分別提出以基因演算法、粒子群演算法來求解投資組合最佳化問題,而這類演算法都是在空間中反覆隨機搜尋,缺乏自我檢查的機制。本文提出的細菌覓食演算法,當解在某個搜尋方向無法再改善時,能夠隨機轉向繼續搜尋以求得最佳解。本文經由實驗證明,細菌覓食演算法確實能在合理的求解時間下,找到相當靠近題庫標準解的效率前緣曲線,而且在各種不同的風險條件下都能提供投資組合解,使投資者有更多的選擇機會。
Portfolio optimization (PO) is a mixed quadratic and integer programming problem, and an effective solution approach is essential for most investors in order to raise expected returns and reduce investment risks. To solve this problem, various heuristic algorithms, such as genetic algorithms and particle swarm optimization, have been proposed in the past. This paper aims to examine the potential of bacterial foraging optimization algorithms (BFO) for solving the portfolio optimization problem. Bacterial foraging optimization algorithm is a new swarm intelligence technique and has successfully applied to some real world problems. Through three operations, chemotaxis, reproduction, and elimination and dispersal, the proposed BFO algorithm can effectively solve a PO problem with cardinality and bounding constraints. The performance of BFO approach was evaluated by performing computational tests on five benchmark data sets, and the computational results were compared to those obtained with existing heuristic algorithms. Experimental results demonstrate that the proposed algorithm is very competitive in portfolio optimization.
摘要 II
圖目錄 VII
表目錄 IX
第1章 簡介 1
1.1 研究背景與動機 1
1.2 研究範圍與限制 2
1.3 研究方法與流程 2
1.4 論文架構 3
第2章 文獻探討 4
2.1 投資組合問題簡介 4
2.2 求解投資組合問題之研究 5
2.3 基因演算法(GENETIC ALGORITHM,GA) 8
2.4 模擬退火法(SIMULATED ANNEALING,SA) 9
2.5 禁忌搜尋法(TABU SEARCH,TS) 10
2.6 粒子群演算法(PARTICLE SWARM OPTIMIZATION,PSO) 12
2.7 各演算法求解投資組合問題之比較 13
第3章 細菌覓食演算法方法論 15
3.1 細菌覓食演算法 15
3.2 應用BFO於投資組合最佳化 16
3.3 數學模式 17
3.4 解的表達 19
3.5 演算流程 20
3.6 不可行解處理 23
第4章 範例說明 28
4.1 細菌初始狀態 28
4.2 細菌翻轉 29
4.3 細菌游泳 31
4.4 細菌複製 33
4.5 細菌淘汰 33
第5章 實驗結果及比較 36
5.1 實驗方法 36
5.2 參數調整及設定 37
5.2.1 細菌每步移動長度的調整 38
5.2.2 細菌數及趨化次數的調整 40
5.3 衡量指標 42
5.4 實驗結果 45
5.4.1 第一階段實驗結果 46
5.4.2 第二階段實驗結果 54
5.5 投資比例修補方法之比較 63
第6章 結論 66
參考文獻 69
附錄A 題庫前處理 71
附錄B非限制式及限制式之效率前緣曲線 73
附錄C最佳解及非支配解的更新 74
附錄D 實作CHANG等學者(2000)的交配方式之實驗結果 78
[1] 林書羽,"應用變動鄰域搜尋法於投資組合最佳化問題之研究",元智大學研究所碩 士論文,2009。
[2] 張瑜庭,"應用和弦演算法於投資組合最佳化問題之研究",元智大學研究所碩士論文,2011。
[3] Chang T.-J, Meade N., Beasley J.E., Sharaiha Y.M., "Heuristics for cardinality constrained portfolio optimization", Computers & Operations Research, Vol. 27, Issue 2000, pp. 1271-1302.
[4] Cura T., "Particles swarm optimization approach to portfolio optimization", Nonlinear Analysis: Real World Applications, Vol. 10, Issue 2009, pp. 2396-2406.
[5] Dasgupta S., Biswas A., Das S., Panigrahi B.K., Abraham A., "A Micro-Bacterial Foraging Algorithm for High-Dimensional Optimization", IEEE Congress on Evolutionary Computation, Issue 2009, pp. 785-792.
[6] Dorigo M., "Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem", IEEE Transactions on Evolutionary Computation, Vol. 1, Issue 1997, pp. 53-66.
[7] Fernandez A., Gomez S., "Portfolio selection using neural networks", Computers & Operations Research, Vol. 34, Issue 2007, pp. 1177-1191.
[8] Fieldsend J., Matatko J., Peng M., "Cardinality constrained portfolio optimisation", Proceedings of the fifth international conference on intelligent data engineering and automated learning. Exeter, Issue 2004.
[9] Glover F., "Tabu Search : A Tutorial", Interfaces, Vol. 20, Issue 1990, pp. 74-94.
[10]Holland J.H., "Adaptation in natural and artificial systems", University of Michigan Press, Issue 1975.
[11]Kellerer H., Maringer D., "Optimization of Cardinality Constrained Portfolios with an Hybrid Local Search Algorithm", MIC’2001-4th Methaheuristics international conference. Porto, Issue 2001.
[12]Kennedy J., Eberhart R., "Particle swarm optimization", IEEE International Conference on Neural Networks, Vol. 4, Issue 1995, pp. 1942-1948.
[13]Kennedy J., Eberhart R., "A Discrete Binary Version of The Particle Swarm Algorithm", IEEE International Conference on Systems, Man, and Cybernetics, Vol. 5, Issue 1997, pp. 4104-4108.
[14]Kirkpatrick S., Gelatt C.D., Jr., Vecchi M.P., "Optimization by Simulated Annealing", Science, Vol 220, Issue 1983, pp. 671-680.
[15]Markowitz H., "Portfolio selection", Journal of Finance, Vol. 7, No.1, Issue 1952, pp. 77-91.
[16]Passino K.M., "Biomimicry of bacterial foraging for distributed optimization and control", IEEE Control Systems Magazine, Vol. 22 , Issue 2002, pp. 52-67.
[17]Soleimani H., Golmakani H.R., Salimi M.H., "Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm", Expert Systems with Applications, Vol. 36, Issue 2009, pp. 5058-5063.
[18]Van der Merwe D.W., Engelbrecht A.P., "Data Clustering using Particle Swarm Optimization", IEEE Congress on Evolutionary Computation, Vol. 1, Issue 2003, pp. 215-220.
[19]Xia Y., Liu B., Wang S., Lai K. K., "A model for portfolio selection with order of expected returns", Computers & Operations Research, Vol. 27, Issue 2000, pp. 409-422.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top