|
1. Lasry, A., A. Zinger, and Y. Ben-Neriah, Inflammatory networks underlying colorectal cancer. Nat Immunol, 2016. 17(3): p. 230-40. 2. Jasperson, K. and R.W. Burt, The Genetics of Colorectal Cancer. Surg Oncol Clin N Am, 2015. 24(4): p. 683-703. 3. Half, E., D. Bercovich, and P. Rozen, Familial adenomatous polyposis. Orphanet J Rare Dis, 2009. 4: p. 22. 4. Vasen, H.F., et al., New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology, 1999. 116(6): p. 1453-6. 5. Haggar, F.A. and R.P. Boushey, Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Clin Colon Rectal Surg, 2009. 22(4): p. 191-7. 6. Janout, V. and H. Kollarova, Epidemiology of colorectal cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2001. 145(1): p. 5-10. 7. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67. 8. Tanaka, T., Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog, 2009. 8: p. 5. 9. Pino, M.S. and D.C. Chung, The chromosomal instability pathway in colon cancer. Gastroenterology, 2010. 138(6): p. 2059-72. 10. Tariq, K. and K. Ghias, Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med, 2016. 13(1): p. 120-35. 11. Boland, C.R. and A. Goel, Microsatellite instability in colorectal cancer. Gastroenterology, 2010. 138(6): p. 2073-2087.e3. 12. Geiersbach, K.B. and W.S. Samowitz, Microsatellite instability and colorectal cancer. Arch Pathol Lab Med, 2011. 135(10): p. 1269-77. 13. Iacopetta, B., F. Grieu, and B. Amanuel, Microsatellite instability in colorectal cancer. Asia Pac J Clin Oncol, 2010. 6(4): p. 260-9. 14. Curtin, K., M.L. Slattery, and W.S. Samowitz, CpG Island Methylation in Colorectal Cancer: Past, Present and Future. Patholog Res Int, 2011. 2011. 15. Grady, W.M. and J.M. Carethers, Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008. 135(4): p. 1079-99. 86 16. Nazemalhosseini Mojarad, E., et al., The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench, 2013. 6(3): p. 120-8. 17. Dienstmann, R., et al., Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer, 2017. 17(2): p. 79-92. 18. de Gramont, A., et al., Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol, 2000. 18(16): p. 2938-47. 19. Watanabe, T., et al., Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. International Journal of Clinical Oncology, 2012. 17(1): p. 1-29. 20. Lievre, A., et al., KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res, 2006. 66(8): p. 3992-5. 21. Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335-42. 22. Aikawa, J., et al., Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem, 2001. 276(8): p. 5876-82. 23. Orellana, A., et al., Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem, 1994. 269(3): p. 2270-6. 24. Esko, J.D. and S.B. Selleck, Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 2002. 71: p. 435-71. 25. Multhaupt, H.A.B. and J.R. Couchman, Heparan Sulfate Biosynthesis: Methods for Investigation of the Heparanosome. J Histochem Cytochem, 2012. 60(12): p. 908-15. 26. Lin, X., Functions of heparan sulfate proteoglycans in cell signaling during development. Development, 2004. 131(24): p. 6009-21. 27. Poulain, F.E. and H.J. Yost, Heparan sulfate proteoglycans: a sugar code for vertebrate development? Development, 2015. 142(20): p. 3456-67. 28. Szatmári, T. and K. Dobra, The Role of Syndecan-1 in Cellular Signaling and its Effects on Heparan Sulfate Biosynthesis in Mesenchymal Tumors. Front Oncol, 2013. 3. 29. Ono, K., et al., Structural features in heparin that interact with VEGF165 and modulate its biological activity. Glycobiology, 1999. 9(7): p. 705-11. 87 30. Turnbull, J.E., et al., Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem, 1992. 267(15): p. 10337-41. 31. Yayon, A., et al., Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 1991. 64(4): p. 841-8. 32. Lortat-Jacob, H., A. Grosdidier, and A. Imberty, Structural diversity of heparan sulfate binding domains in chemokines. Proc Natl Acad Sci U S A, 2002. 99(3): p. 1229-34. 33. Proudfoot, A.E., et al., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1885-90. 34. Matsuo, I. and C. Kimura-Yoshida, Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development. Curr Opin Genet Dev, 2013. 23(4): p. 399-407. 35. Schenauer, M.R., et al., CCR2 chemokines bind selectively to acetylated heparan sulfate octasaccharides. J Biol Chem, 2007. 282(35): p. 25182-8. 36. Lantz, M., et al., On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin. J Clin Invest, 1991. 88(6): p. 2026-31. 37. Lortat-Jacob, H. and J.A. Grimaud, Interferon-gamma binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule. FEBS Lett, 1991. 280(1): p. 152-4. 38. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan Sulfate Proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7). 39. Bishop, J.R., M. Schuksz, and J.D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007. 446(7139): p. 1030-7. 40. Lee, J.S. and C.B. Chien, When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet, 2004. 5(12): p. 923-35. 41. Parish, C.R., The role of heparan sulphate in inflammation. Nat Rev Immunol, 2006. 6(9): p. 633-43. 42. Iozzo, R.V., Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol, 2005. 6(8): p. 646-56. 43. Kolset, S.O. and H. Tveit, Serglycin--structure and biology. Cell Mol Life Sci, 2008. 65(7-8): p. 1073-85. 44. Hacker, U., K. Nybakken, and N. Perrimon, Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol, 2005. 6(7): p. 530-41. 88 45. Yamamoto, S., et al., Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling. Am J Physiol Gastrointest Liver Physiol, 2013. 305(3): p. G241-9. 46. Bode, L., et al., Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest, 2008. 118(1): p. 229-38. 47. Day, R., et al., Expression of syndecan-1 in inflammatory bowel disease and a possible mechanism of heparin therapy. Dig Dis Sci, 1999. 44(12): p. 2508-15. 48. Oshiro, M., et al., Immunohistochemical localization of heparan sulfate proteoglycan in human gastrointestinal tract. Histochem Cell Biol, 2001. 115(5): p. 373-80. 49. Wang, X., et al., Activated Syndecan-1 shedding contributes to mice colitis induced by dextran sulfate sodium. Dig Dis Sci, 2011. 56(4): p. 1047-56. 50. Wang, X.-f., et al., Low Molecular Weight Heparin Relieves Experimental Colitis in Mice by Downregulating IL-1β and Inhibiting Syndecan-1 Shedding in the Intestinal Mucosa. PLOS ONE, 2013. 8(7): p. e66397. 51. Kato, M., et al., Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell, 1995. 6(5): p. 559-76. 52. Day, R.M., et al., Changes in the expression of syndecan-1 in the colorectal adenoma-carcinoma sequence. Virchows Arch, 1999. 434(2): p. 121-5. 53. Lin, X., et al., Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development, 1999. 126(17): p. 3715-23. 54. Lin, X. and N. Perrimon, Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature, 1999. 400(6741): p. 281-4. 55. Toyoda, H., et al., Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem, 2000. 275(29): p. 21856-61. 56. Fan, G., et al., Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett, 2000. 467(1): p. 7-11. 57. Ringvall, M., et al., Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem, 2000. 275(34): p. 25926-30. 89 58. Forsberg, E., et al., Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature, 1999. 400(6746): p. 773-6. 59. Humphries, D.E., et al., Heparin is essential for the storage of specific granule proteases in mast cells. Nature, 1999. 400(6746): p. 769-72. 60. Pallerla, S.R., et al., Altered heparan sulfate structure in mice with deleted NDST3 gene function. J Biol Chem, 2008. 283(24): p. 16885-94. 61. Stickens, D., et al., Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development, 2005. 132(22): p. 5055-68. 62. Hecht, J.T., et al., Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome II and loss of heterozygosity for EXT-linked markers on chromosomes II and 8. Am J Hum Genet, 1995. 56(5): p. 1125-31. 63. Grigorieva, E., et al., Decreased expression of human D-glucuronyl C5-epimerase in breast cancer. Int J Cancer, 2008. 122(5): p. 1172-6. 64. Krausgruber, T., et al., IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol, 2011. 12(3): p. 231-238. 65. Uchimura, K., et al., HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem, 2006. 7: p. 2. 66. Michos, O., et al., Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development, 2007. 134(13): p. 2397-405. 67. Lamanna, W.C., et al., Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem, 2008. 283(41): p. 27724-35. 68. Iozzo, R.V. and J.D. San Antonio, Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest, 2001. 108(3): p. 349-55. 69. Nathan, C.F., et al., Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med, 1983. 158(3): p. 670-89. 70. Escobar Galvis, M.L., et al., Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat Chem Biol, 2007. 3(12): p. 773-8. 71. Robinson, J., M. Viti, and M. Hook, Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol, 1984. 98(3): p. 946-53. 72. Nackaerts, K., et al., Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer, 1997. 74(3): p. 335-45. 90 73. Matsumoto, A., et al., Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer, 1997. 74(5): p. 482-91. 74. Vlodavsky, I. and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest, 2001. 108(3): p. 341-7. 75. Parish, C.R., C. Freeman, and M.D. Hulett, Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta, 2001. 1471(3): p. M99-108. 76. Dempsey, L.A., G.J. Brunn, and J.L. Platt, Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sci, 2000. 25(8): p. 349-51. 77. Vlodavsky, I., et al., Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des, 2007. 13(20): p. 2057-73. 78. Tang, W., et al., Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol, 2002. 15(6): p. 593-8. 79. Wang, Z., et al., Positive association of heparanase expression with tumor invasion and lymphatic metastasis in gastric carcinoma. Mod Pathol, 2005. 18(2): p. 205-11. 80. Sato, T., et al., Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hematogenous metastasis, and prognosis. J Surg Oncol, 2004. 87(4): p. 174-81. 81. Shinyo, Y., et al., Heparanase expression is an independent prognostic factor in patients with invasive cervical cancer. Annals of Oncology, 2003. 14(10): p. 1505-1510. 82. Hoffmann, A.C., et al., High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg, 2008. 12(10): p. 1674-81; discussion 1681-2. 83. Koliopanos, A., et al., Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res, 2001. 61(12): p. 4655-9. 84. Chen, G., et al., Expression of heparanase in hepatocellular carcinoma has prognostic significance: a tissue microarray study. Oncol Res, 2008. 17(4): p. 183-9. 85. Liu, Y.B., et al., Expression and significance of heparanase and nm23-H1 in hepatocellular carcinoma. World J Gastroenterol, 2005. 11(9): p. 1378-81. 86. Lerner, I., et al., Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res, 2008. 14(3): p. 668-76. 91 87. Ogishima, T., et al., Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res, 2005. 11(3): p. 1028-36. 88. Gohji, K., et al., Heparanase protein and gene expression in bladder cancer. J Urol, 2001. 166(4): p. 1286-90. 89. Inamine, M., et al., Heparanase expression in endometrial cancer: analysis of immunohistochemistry. J Obstet Gynaecol, 2008. 28(6): p. 634-7. 90. Mikami, S., et al., Expression of heparanase in renal cell carcinomas: implications for tumor invasion and prognosis. Clin Cancer Res, 2008. 14(19): p. 6055-61. 91. Lerner, I., Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. 2011. 121(5): p. 1709-21. 92. Adair, T.H. and J.P. Montani, in Angiogenesis. 2010: San Rafael (CA). 93. Tahergorabi, Z. and M. Khazaei, A review on angiogenesis and its assays. Iran J Basic Med Sci, 2012. 15(6): p. 1110-26. 94. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10. 95. Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6. 96. Nishida, N., et al., Angiogenesis in Cancer. Vasc Health Risk Manag, 2006. 2(3): p. 213-9. 97. Tonini, T., F. Rossi, and P.P. Claudio, Molecular basis of angiogenesis and cancer. Oncogene, 2003. 22(42): p. 6549-56. 98. Herbert, S.P. and D.Y. Stainier, Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol, 2011. 12(9): p. 551-64. 99. Weis, S.M. and D.A. Cheresh, Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med, 2011. 17(11): p. 1359-70. 100. Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005. 307(5706): p. 58-62. 101. Carmeliet, P. and R.K. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov, 2011. 10(6): p. 417-27. 102. Tas, S.W., et al., Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol, 2016. 12(2): p. 111-22. 103. Al-Husein, B., et al., Anti-angiogenic therapy for cancer: An update. Pharmacotherapy, 2012. 32(12): p. 1095-111. 92 104. Kubota, Y., Tumor angiogenesis and anti-angiogenic therapy. Keio J Med, 2012. 61(2): p. 47-56. 105. Günzler, W. and L. Flohé, Urinary-type plasminogen activator (uPA), in Fibrinolytics and Antifibrinolytics. 2001, Springer. p. 91-110. 106. Tkachuk, V.A., O.S. Plekhanova, and Y.V. Parfyonova, Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol, 2009. 87(4): p. 231-51. 107. Su, S.C., et al., The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets, 2016. 20(5): p. 551-66. 108. Duffy, M.J., The urokinase plasminogen activator system: role in malignancy. Current pharmaceutical design, 2004. 10(1): p. 39-49. 109. Smith, H.W. and C.J. Marshall, Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol, 2010. 11(1): p. 23-36. 110. Noh, H., S. Hong, and S. Huang, Role of urokinase receptor in tumor progression and development. Theranostics, 2013. 3(7): p. 487-95. 111. Stepanova, V., et al., Nuclear translocation of urokinase-type plasminogen activator. Blood, 2008. 112(1): p. 100-10. 112. Hiendlmeyer, E., et al., Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res, 2004. 64(4): p. 1209-14. 113. Moreau, M., S. Mourah, and C. Dosquet, beta-Catenin and NF-kappaB cooperate to regulate the uPA/uPAR system in cancer cells. Int J Cancer, 2011. 128(6): p. 1280-92. 114. Ulisse, S., et al., The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets, 2009. 9(1): p. 32-71. 115. Mekkawy, A.H., M.H. Pourgholami, and D.L. Morris, Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev, 2014. 34(5): p. 918-56. 116. Zhou, H.M., et al., Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. Embo j, 2000. 19(17): p. 4817-26. 117. Lomholt, A.F., et al., Intact and cleaved forms of the urokinase receptor enhance discrimination of cancer from non-malignant conditions in patients presenting with symptoms related to colorectal cancer. Br J Cancer, 2009. 101(6): p. 992-7. 93 118. Riisbro, R., et al., Soluble urokinase plasminogen activator receptor in preoperatively obtained plasma from patients with gynecological cancer or benign gynecological diseases. Gynecol Oncol, 2001. 82(3): p. 523-31. 119. Sternlicht, M.D. and S.W. Sunnarborg, The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia, 2008. 13(2): p. 181-94. 120. Busser, B., et al., The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta, 2011. 1816(2): p. 119-31. 121. Ohchi, T., et al., Amphiregulin is a prognostic factor in colorectal cancer. Anticancer Res, 2012. 32(6): p. 2315-21. 122. Halamkova, J., et al., Clinical relevance of uPA, uPAR, PAI 1 and PAI 2 tissue expression and plasma PAI 1 level in colorectal carcinoma patients. Hepatogastroenterology, 2011. 58(112): p. 1918-25. 123. Im, J.H., et al., Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res, 2004. 64(23): p. 8613-9. 124. Jackson, H.W., et al., TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer, 2017. 17(1): p. 38-53. 125. Murphy, G., Tissue inhibitors of metalloproteinases. Genome Biol, 2011. 12(11): p. 233. 126. Stetler-Stevenson, W.G., Tissue Inhibitors of Metalloproteinases In Cell Signaling: Metalloproteinase-independent Biological Activities. Sci Signal. 1(27): p. re6. 127. Grunnet, M., M. Mau-Sorensen, and N. Brunner, Tissue inhibitor of metalloproteinase 1 (TIMP-1) as a biomarker in gastric cancer: a review. Scand J Gastroenterol, 2013. 48(8): p. 899-905. 128. Wurtz, S.O., et al., TIMP-1 as a tumor marker in breast cancer--an update. Acta Oncol, 2008. 47(4): p. 580-90. 129. Kishimoto, K., et al., Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene, 2005. 24(3): p. 445-56. 130. Tello-Montoliu, A., J.V. Patel, and G.Y. Lip, Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost, 2006. 4(9): p. 1864-74. 131. Holmes, D.I.R. and I. Zachary, The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol, 2005. 6(2): p. 209. 94 132. Lee, J.C., et al., Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer, 2000. 36(6): p. 748-53. 133. Gasparini, G., Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist, 2000. 5 Suppl 1: p. 37-44. 134. Zhan, P., et al., Prognostic value of vascular endothelial growth factor expression in patients with lung cancer: a systematic review with meta-analysis. J Thorac Oncol, 2009. 4(9): p. 1094-103. 135. Willett, C.G., et al., Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med, 2004. 10(2): p. 145-7. 136. Sen, R. and D. Baltimore, Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986. 46(5): p. 705-16. 137. Hoesel, B. and J.A. Schmid, The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer, 2013. 12: p. 86. 138. Hayden, M.S. and S. Ghosh, Shared principles in NF-kappaB signaling. Cell, 2008. 132(3): p. 344-62. 139. Vlahopoulos, S.A., et al., Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev, 2015. 26(4): p. 389-403. 140. Wang, S., et al., NF-κB Signaling Pathway, Inflammation and Colorectal Cancer. Cell Mol Immunol, 2009. 6(5): p. 327-34. 141. Xia, Y., S. Shen, and I.M. Verma, NF-kappaB, an active player in human cancers. Cancer Immunol Res, 2014. 2(9): p. 823-30. 142. Hassanzadeh, P., Colorectal cancer and NF-κB signaling pathway. Gastroenterol Hepatol Bed Bench, 2011. 4(3): p. 127-32. 143. Tzeng, S.T., et al., NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS One, 2013. 8(6): p. e67040. 144. 曾晟泰, 鑑定NDST4為大腸直腸癌之抑癌基因並製作Ndst4基因剔除小鼠, in 醫學檢驗暨生物技術學研究所. 2013, 國立臺灣大學: 台北市. p. 83. 145. Wang, Y., et al., Amiloride modulates urokinase gene expression at both transcription and post-transcription levels in human colon cancer cells. Clin Exp Metastasis, 1995. 13(3): p. 196-202. 146. Holden, N.S., et al., Phorbol ester-stimulated NF-kappaB-dependent transcription: roles for isoforms of novel protein kinase C. Cell Signal, 2008. 20(7): p. 1338-48. 95 147. Mut, M., S. Amos, and I.M. Hussaini, PKC alpha phosphorylates cytosolic NF-kappaB/p65 and PKC delta delays nuclear translocation of NF-kappaB/p65 in U1242 glioblastoma cells. Turk Neurosurg, 2010. 20(3): p. 277-85. 148. Rosse, C., et al., PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol, 2010. 11(2): p. 103-12. 149. Fukuyama, R., et al., Role of IKK and oscillatory NFkappaB kinetics in MMP-9 gene expression and chemoresistance to 5-fluorouracil in RKO colorectal cancer cells. Mol Carcinog, 2007. 46(5): p. 402-13. 150. Kim, J.M., et al., Nuclear factor-kappa B activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin. Clinical and Experimental Immunology, 2002. 130(1): p. 59-66. 151. Zhu, C., et al., Plasminogen Activator Inhibitor 1 Promotes Immunosuppression in Human Non-Small Cell Lung Cancers by Enhancing TGF-Β1 Expression in Macrophage. Cellular Physiology and Biochemistry, 2017. 44(6): p. 2201-2211. 152. Hoang, T.T. and R.T. Raines, Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Research, 2017. 45(2): p. 818-831. 153. Streicher, K.L., et al., Activation of a nuclear factor kappaB/interleukin-1 positive feedback loop by amphiregulin in human breast cancer cells. Mol Cancer Res, 2007. 5(8): p. 847-61. 154. Sakamoto, K., et al., Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res, 2009. 15(7): p. 2248-58. 155. Xie, T.X., et al., Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep, 2010. 23(3): p. 725-32. 156. Wilczynska, K.M., et al., A novel mechanism of tissue inhibitor of metalloproteinases-1 activation by interleukin-1 in primary human astrocytes. J Biol Chem, 2006. 281(46): p. 34955-64. 157. Bommarito, A., et al., BRAFV600E mutation, TIMP-1 upregulation, and NF-kappaB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer, 2011. 18(6): p. 669-85. 158. McMahon, B.J. and H.C. Kwaan, Components of the Plasminogen-Plasmin System as Biologic Markers for Cancer. Adv Exp Med Biol, 2015. 867: p. 145-56. 96 159. Zheng, J., et al., Protein kinase C-alpha (PKCalpha) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder. BMC Cancer, 2017. 17(1): p. 432. 160. Lee, W., et al., Epimedium koreanum Nakai inhibits PMA-induced cancer cell migration and invasion by modulating NF-kappaB/MMP-9 signaling in monomorphic malignant human glioma cells. Oncol Rep, 2017. 38(6): p. 3619-3631. 161. Hocker, M., et al., Gastrin and phorbol 12-myristate 13-acetate regulate the human histidine decarboxylase promoter through Raf-dependent activation of extracellular signal-regulated kinase-related signaling pathways in gastric cancer cells. J Biol Chem, 1997. 272(43): p. 27015-24. 162. Kang, D.W., et al., Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem, 2008. 283(7): p. 4094-104. 163. Chang, M.S., et al., Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2 expression in human pulmonary epithelial cells via Ras, Raf-1, ERK, and NF-kappaB, but not p38 MAPK, pathways. Cell Signal, 2005. 17(3): p. 299-310. 164. Shin, Y., et al., PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells. Exp Mol Med, 2007. 39(1): p. 97-105. 165. Gatto, F., et al., PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles. Nanomaterials, 2017. 7(10): p. 332. 166. Lee, H.W., et al., Phorbol 12-myristate 13-acetate up-regulates the transcription of MUC2 intestinal mucin via Ras, ERK, and NF-kappa B. J Biol Chem, 2002. 277(36): p. 32624-31. 167. Huang, Y. and N. A Noble, PAI-1 as a Target in Kidney Disease. Vol. 8. 2007. 1007-15. 168. Wang, Y., et al., Human urokinase receptor expression is inhibited by amiloride and induced by tumor necrosis factor and phorbol ester in colon cancer cells. FEBS Lett, 1994. 353(2): p. 138-42. 169. Gillespie, E., et al., Plasminogen activator inhibitor-1 is increased in colonic epithelial cells from patients with colitis-associated cancer(). J Crohns Colitis, 2013. 7(5): p. 403-11. 97 170. Pavón, M.A., et al., uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget, 2016. 7(35): p. 57351-66. 171. Li, S., et al., Angiogenin prevents serum withdrawal-induced apoptosis of P19 embryonal carcinoma cells. Febs j, 2010. 277(17): p. 3575-87. 172. Trebec-Reynolds, D.P., et al., VEGF-A expression in osteoclasts is regulated by NF-kappaB induction of HIF-1alpha. J Cell Biochem, 2010. 110(2): p. 343-51. 173. Knelson, E.H., J.C. Nee, and G.C. Blobe, Heparan sulfate signaling in cancer. Trends Biochem Sci, 2014. 39(6): p. 277-88. 174. Vicente, C.M., et al., Heparan Sulfate Proteoglycans in Human Colorectal Cancer. Analytical Cellular Pathology, 2018. 2018: p. 10. 175. Mousavi, A., et al., Expression Patterns of CXCL12 and its Receptor in Colorectal Carcinoma. Clin Lab, 2018. 64(5): p. 871-876. 176. le Rolle, A.-F., et al., The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. Journal of Translational Medicine, 2015. 13(1): p. 199. 177. Ning, Y. and H.J. Lenz, Targeting IL-8 in colorectal cancer. Expert Opin Ther Targets, 2012. 16(5): p. 491-7.
|