1.王如意、譚智宏(1991),「修正型水筒模式之研究及其應用於流域逕流量之預測」,台灣水利,39(3):1-23。
2.張斐章、梁晉銘(1993),「自組性演算法於河川流量預測之研究」,台灣水利,41(4):14-24。
3.王如意、何輔仁、謝平城(1994),「坡地集水區分布型降雨-逕流模式之研究」,台灣水利,42(4):1-20。
4.張斐章、王文清(1995),「模糊線性規劃於水資源規劃之應用」,台灣水利,43(1):31-40。
5.游保杉、鄭玉荻、蔡長泰(1995),「應用全域最佳化技巧於分布型降雨-逕流模式」,台灣水利,43(2):45-53。
6.李光敦、王如意(1995),「無因次地貌瞬時單位歷線之研究」,台灣水利,43(4):1-8。
7.郭勝豐(1995),「遺傳機制原理應用於灌溉系統之最佳化規劃」,台灣水利,43(4):77-88。
8.葉昭憲(1996),「改善基因演算之文獻回顧」,台灣水利,44(1):92-105。
9.徐義人、詹明勇(1996),「水庫入流量之即時預測」,台灣水利,44(2):47-53。
10.陳永祥、吳建民、洪銘堅(1997),「模糊理論於水庫水質綜合評判之應用」,台灣水利,45(1):33-45。
11.陳昶憲、黃偉民、朱益辰(1997),「烏溪流域洪流時序分析」,台灣水利,45(3):72-82。
12.陳昶憲、楊朝仲(1998),「時序類神經集水區洪水預測模式」,台灣水利,46(1):84-98。
13.陳建宏、陳昶憲、蔡國慶(1998),「雨量因子在模糊類神經洪水位預報之影響研究」,第九屆海水利工程研討會論文集,pp.I133-I140。
14.陳莉(2000),「遺傳演算法與其應用於優選翡翠水庫規線之研究」,台灣水利,48(1):48-58。
15.王如意、周建明(2001),「應用小波轉換於降雨-逕流歷程之模擬」,台灣水利,49(3):1-13。
16.陳莉、簡大為(2001),「逕流量推估之研究」,台灣水利,49(4):55-67。
17.洪益發、梁昇(2001),「以類神經網路預測河川短期距流量」,中華水土保持學報,32(3):215-225。18.江衍銘、張麗秋、張斐章(2002),「回饋式類神經網路於二階段即時流量預測」,台灣水利,50(2):15-21。
19.洪益發、梁昇(2002),「應用基因演算法優選水資源調配策略」,台灣水利,50(2):59-68。
20.李允中、王小璠、蘇木春 (2003),「模糊理論及其應用」,全華科技圖書股份有限公司,pp.2-25。
21.洪益發、梁昇(2003),「集水區旬流量預測研究」,水土保持學報,35(2):171-186。22.陳昶憲、劉錦蕙、楊美美、陳韋佑(2003),「時序與灰色時流量預測模式效能比較」,台灣水利,51(4):68-78。
23.洪益發、梁昇(2003),「以基因演算法優選流量單位歷線」,水土保持學報,35(4):395-412。24.王如意、潘宗毅、宋文元(2004),「遞迴式類神經網路之系統識別及其於降雨逕流模擬之應用」,台灣水利,52(4):1-30。
25.林昭遠、林鶴儒、劉昌文(2004),「陳有蘭溪集水區降雨-逕流模式動態分析系統建置之研究」,水土保持學報,36(3):243-258。26.Bedient, P. B., and W. C. Huber (1998), Hydrology and Floodplain Analysis, Addison-Wesley Publishing Company, pp.79-95.
27.Cheng, J. D., Y. C. Huang, H. L. Wu, J. L. Yen, and C. H. Chang (2005), Hydro meteorological and landuse attributes of debris flow and debris floods during typhoon Toraji July 29-31 in Taiwan, Journal of Hydrology, 306:161-173.
28.Chiang, Y. M., L. C. Chang, and F. J. Chang (2004), Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling, Journal of Hydrology, 290:297-311.
29.Chiang, Y. T. (1993), The backpropagation algorithm and group method of data handing for forecasting, Master thesis of Asian Institute of Technology, Bangkok, Thailand.
30.Chow, V. T., D. R. Maidment, and L. W. Mays (1998) , Applied Hydrology, McGraw-Hill International Editions, pp.201-236.
31.Corradini, C., R. Morbidelli, C. Saltalippi, and F. Melone (2004), Flood forecasting and infiltration modeling, Hydrological Sciences, 49(2), April.
32.Coulibaly, P., F. Anctil, and B. Bobee (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach ,Journal of Hydrology, 230:244-257.
33.Garrote, L., and R. L. Bras (1995), A distributed model for real-time flood forecasting using digital elevation models , Journal of Hydrology, 167:279-306.
34.Gen, M., and R. Cheng (1997), Genetic Algorithms and Engineering Design, John Wiley & Sons, Inc, pp.1-41.
35.Hromadka Ⅱ, T. V. (2000), A unit hydrograph rainfall-runoff model using Mathematica, Environmental modeling and software, 15:151-160.
36.Hughes, D. A. (2004), Incorporating groundwater recharge and discharge functions into an existing monthly rainfall-runoff model, Hydrological Sciences, 49(2), April.
37.Hundecha, Y., and A. Bardossy (2004), Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model, Journal of Hydrology, 292:281-295.
38.Iorgulescu, I., and K. J. Beven (2004), Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling, Water Resour. Res., 40, W08403, doi: 10.1029/2004WR003094.
39.Jain, A., and S. Srinivasulu (2004), Development of effective and efficient rainfall-runoff models using integration of deterministic real-coded genetic algorithms and artificial neural network techniques, Water Resour. Res., 40, W04302, doi: 10.1029/2003WR 002355.
40.Lardet, P., and C. Obled (1994), Real-time flood forecasting using a stochastic rainfall generator, Journal of Hydrology, 230:244-257.
41.Lin, G. F., and Y. M. Wang (1996), General stochastic instantaneous unit hydrograph, Journal of Hydrology, 182:227-238.
42.Lin, G. F., and L. H. Chen (2004), A non-linear rainfall-runoff model using radial basis function network, Journal of Hydrology, 289:1-8.
43.Lin, M. L., and F. S. Jeng (2000), Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan-typhoon Herb, Engineering Geology, 58:191-207.
44.Luk, K. C., J. E. Ball, and A. Sharma (2000), A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting, Journal of Hydrology, 227:56-65.
45.Maria, C. M., G. M. Wenceslao, F. B. Manuel, P. S. Jose Manuel, and L. C. Roman (2004), Modeling of the monthly and daily behavior of the runoff of the Xallas river using Box-Jenkins and neural networks methods, Journal of Hydrology, 296:38-58.
46.Moradkhani, H., K. L. Hsu, H. V. Gupta, and S. Sorooshian (2004), Improved streamflow forecasting using self-organizing radial basis function artificial neural networks, Journal of Hydrology, 295:246-262.
47.Nalbantis, I., Ch. Obled, and J. Y. Rodriguez (1995), Unit hydrograph and effective precipitation identification, Journal of Hydrology, 168:127-157.
48.Nayak, P. C., K. P. Sudheer, D. M. Rangan, and K. S. Ramasastri (2004), A neuro-fuzzy computing technique for modeling hydrological time series, Journal of Hydrology, 291:52-66.
49.Pan, T. Y., and R. Y. Wang (2004), State space neural networks for short term rainfall-runoff forecasting, Journal of Hydrology, 297:34-50.
50.Rao, A. R., and W. Tirtotjondro (1995), Computation of unit hydrographs by a Bayesian method, Journal of Hydrology, 164:325-344.
51.Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube (2004), Modeling of the daily rainfall-runoff relationship with artificial neural network, Journal of Hydrology, 285:96-113.
52.Shamseldin, A. Y., K. M. Oconnor, and G. C. Liang (1997), Methods for combining the outputs of different rainfall-runoff models, Journal of Hydrology, 197:203-229.
53.Smith, M. B., V. I. Koren, Z. Zhang, S. M. Reed, J.-J. Pan, and F. Moreda (2004), Runoff response to spatial variability in precipitation: an analysis of observed data, Journal of Hydrology, 298:267-286.
54.Su, N. (1995), The unit hydrograph model for hydrograph separation, Environmental International, 21(5):509-515.
55.Tomasino, M., D. Zanchettin, and P. Traverso (2004), Long-range forecasts of River Po discharges based on predictable solar activity and a fuzzy neural network model, Hydrological Sciences, 49(4), August.
56.Toth, E., A. Brath, and A. Montanari (2000), Comparison of short-term rainfall prediction models for real-time flood forecasting, Journal of Hydrology, 239:132-147.
57.Wardlaw, R., and M. Sharif (1999), Evaluation of genetic algorithms for optimal reservoir system operation, Journal of Water Resources Planning and Management, 125(1): 25-33.
58.Yen, J., and R. Langari (1999), Fuzzy Logic intelligence, control, and information, Prentice-Hall, Inc., pp. 44-46.
59.Yu, P. S., S. T. Chen, C. C. Wu, and S. C. Lin (2004), Comparison of grey and phase-space rainfall forecasting models using a fuzzy decision method, Hydrological Sciences, 49(4), August.
60.Yue, S., and M. Hashino (2000), Unit hydrographs to model quick and slow runoff components of streamflow, Journal of Hydrology, 227:195-206.
61.Zhao, B., Y. K. Tung, K. C. Yeh, and J. C. Yang (1997), Storm resampling for uncertainty analysis of a multiple-storm unit hydrograph, Journal of Hydrology, 194:366-384.