跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/14 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪益發
研究生(外文):Yi-Fa Hung
論文名稱:颱風洪峰流量之預測
論文名稱(外文):Peak Flow Prediction of Typhoon-induced Floods
指導教授:梁昇梁昇引用關係
指導教授(外文):Sheng Liang
學位類別:博士
校院名稱:國立中興大學
系所名稱:水土保持學系
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:150
中文關鍵詞:颱風優選基因演算模糊邏輯單位歷線烏溪流域洪峰流量預測
外文關鍵詞:typhoonoptimizationgenetic algorithmsfuzzy logicunit hydrographWu-Si river basinpeak flowprediction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:686
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:5
本論文研究南北通橋集水區颱風逕流洪峰流量及發生時間之預測,首先應用基因演算法優選單位歷線以率定颱風降雨與逕流之關係。然後於接續之預測驗證時,有效雨量以模糊Φ值間接估算,可相當精準地預測逕流洪峰及發生時間。
研究案例選用中央氣象局對於颱風路徑之第1、2、3、6、9等五類路徑颱風,原則上每一路徑自中央氣象局網站蒐集兩場颱風,其中一場颱風率定降雨及逕流關係,另外一場颱風用於模式驗證(但第1、9路徑無驗證案例)。案例南北通橋集水區位於台灣中部烏溪流域支流北港溪,該集水區有清流、惠蓀與翠巒等三處雨量站及南北通橋流量站,颱風期間之降雨與逕流觀測資料蒐集自經濟部水利署。
本研究對於率定案例之預測結果,每一路徑颱風案例之預測率定結果都甚佳,其中第1類路徑之尼爾遜颱風洪峰流量預測誤差+0cms (誤差率+0%)、第2類路徑之揚希颱風洪峰流量預測誤差+0cms (誤差率+0%)、第3類路徑之莎拉颱風洪峰流量預測誤差+1cms (誤差率+0.26%)、第6類路徑之亞力士颱風洪峰流量預測誤差-2cms (誤差率-0.58%)、第9類路徑之韋恩颱風洪峰流量預測誤差+1cms (誤差率+0.61%)。至於在洪峰流量發生時間之預測結果,除第3類路徑之莎拉颱風晚了2小時以外,其餘各路徑之時間預測誤差皆為0小時,亦即完全符合。
本研究對於驗證案例之預測結果,以第2類颱風路徑與第6類颱風路徑之預測結果最好,其中賀伯颱風洪峰流量預測誤差+8cms (誤差率+1.63%)、道格颱風洪峰流量預測誤差-2cms (誤差率-0.27%)。第3類颱風路徑預測結果不佳,桃芝颱風洪峰流量預測誤差-641cms (誤差率-41.90%)。另外在洪峰流量發生時間之預測結果,第2類路徑之賀伯颱風晚了1小時、第6類路徑之道格颱風晚了3小時、第3類路徑之桃芝颱風晚了1小時。
驗證結果較差的部份是桃芝颱風洪峰流量預測誤差-641cms,其原因是桃芝颱風的雨型相當特別,瞬間降下大量暴雨,隨之產生巨大洪峰流量,所以驗證桃芝颱風才會失準。所以未來若有第3類路徑颱風在案例集水區發生時,建議增加桃芝颱風之案例,與莎拉颱風並列為兩個參考前例,同時據以進行預測,再對照集水區當時之實際逕流情況,研判其特性是趨向莎拉颱風或桃芝颱風。為了便於應用,本研究亦優選出桃芝颱風之單位歷線,其率定之洪峰流量預測誤差-1cms(誤差率-0.07%)、發生時間預測誤差晚了1小時。
Prediction on magnitude and reaching time of peak flow for typhoon-induced floods were undertaken for Nan-Bei-Tong Bridge watershed in this paper. The optimal unit hydrograph is obtained by using genetic algorithms to calibrate rainfall-runoff relationship. The fuzzy Φvalue is added for the purpose of precise prediction.
No.1, No.2, No.3, No.6, and No.9 tracks, classified by CWB, were selected for case study. A pair of typhoon cases from each track, one for calibration, the other for validation except No.1 and No.9 tracks, that is, 8 typhoon events were studied in this paper. The study watershed is located at sub-stream called Bei-Gang creek within Wu-Si river basin in Central Taiwan. There are three rainfall stations named Ching-Liu, Huei-Sun, and Cuei-Fong, and one stage station named Nan-Bei-Tong Bridge in this watershed. The typhoons information is downloaded from website of Central Weather Bureau, and the observed data of rainfall and runoff are collected from Water Resources Agency.
For the calibration procedures, the errors limits less than 1% the deviations of magnitude of peal flow is +0cms (error ratio +0%) of Typhoon Nelson (No.1 track), +0cms (error ratio +0%) of Typhoon Yancy (No.2 track), +1cms (error ratio +0.26%) of Typhoon Sarah (No.3 track), -2cms (error ratio -0.58%) of Typhoon Alex (No.6 track), and +1cms (error ratio +0.61%) of Typhoon Wayne (No.9 track); time of peak flow is perfectly fitted except Typhoon Sarah is 2 hours late.
For the prediction procedures, No.2 and No.6 tracks own high credits, while No.3 track is poor. The deviation of magnitude are +8cms (error ratio +1.63%) of Typhoon Herb (No.2 track), -641cms (error ratio -41.90%) of Typhoon Toraji (No.3 track), and -2cms (error ratio -0.27%) of Typhoon Doug (No.6 track), respectively; the reaching time of peak flow are 1 hour late for Typhoon Herb, 1 hour late for Typhoon Toraji, and 3 hours late for Typhoon Doug.
The dominant reason for Typhoon Toraji was not well predicted was investigated. The author believed that the rainfall pattern of Typhoon Toraji is unique and not compatible. Prediction of No.3 track typhoon-induced flood in this watershed is then recommended to use both of two typical past samples, Typhoon Toraji and Typhoon Sarah.
中文摘要………………………………………………………Ⅰ
英文摘要………………………………………………………Ⅳ
章節目錄…………………………………………………………Ⅶ
圖次目錄…………………………………………………………Ⅹ
表次目錄…………………………………………………………ⅩⅢ
符號說明………………………………………………………ⅩⅣ

第一章 前言……………………………………………………1
第一節 研究動機…………………………………………1
第二節 研究目的…………………………………………2
第三節 研究流程…………………………………………3
第二章 前人研究……………………………………………………5
第一節 洪水流量預測……………………………………5
第二節 模糊邏輯…………………………………………8
第三節 基因演算法………………………………………9
第三章 研究材料與案例…………………………………………11
第一節 案例集水區…………………………………………11
第二節 案例颱風之選取…………………………………13
第三節 降雨及逕流觀測資料……………………………24
第四章 預測模式之率定…………………………………………30
第一節 Φ入滲指數之估算………………………………30
第二節 單位歷線之優選……………………………………32
第三節 率定結果討論………………………………………56
第五章 預測模式之驗證………………………………………60
第一節 模糊Φ值之推估……………………………………60
第二節 洪峰流量之預測……………………………………74
第三節 預測結果討論………………………………………77
第六章 綜合討論………………………………………………81
第一節 颱風路徑之影響……………………………………81
第二節 單位歷線之適用……………………………………82
第三節 基因演算之應用……………………………………83
第四節 模糊邏輯之應用……………………………………84
第五節 中間流之估算………………………………………84
第六節 未來之即時預測……………………………………88
第七節 其他預測輔助指標…………………………………91
第七章 結論與建議……………………………………………93
第一節 結論…………………………………………………93
第二節 建議…………………………………………………95
參考文獻 …………………………………………………………97
附錄一 案例颱風之動態及災情描述………………………104
附錄二 案例颱風之侵台路徑圖……………………………110
附錄三 案例颱風之總雨量分布圖…………………………114
附錄四 案例颱風之時雨量分布圖…………………………117
附錄五 案例颱風之降雨及逕流紀錄………………………123
附錄六 降雨及逕流雙累積曲線圖…………………………147
1.王如意、譚智宏(1991),「修正型水筒模式之研究及其應用於流域逕流量之預測」,台灣水利,39(3):1-23。
2.張斐章、梁晉銘(1993),「自組性演算法於河川流量預測之研究」,台灣水利,41(4):14-24。
3.王如意、何輔仁、謝平城(1994),「坡地集水區分布型降雨-逕流模式之研究」,台灣水利,42(4):1-20。
4.張斐章、王文清(1995),「模糊線性規劃於水資源規劃之應用」,台灣水利,43(1):31-40。
5.游保杉、鄭玉荻、蔡長泰(1995),「應用全域最佳化技巧於分布型降雨-逕流模式」,台灣水利,43(2):45-53。
6.李光敦、王如意(1995),「無因次地貌瞬時單位歷線之研究」,台灣水利,43(4):1-8。
7.郭勝豐(1995),「遺傳機制原理應用於灌溉系統之最佳化規劃」,台灣水利,43(4):77-88。
8.葉昭憲(1996),「改善基因演算之文獻回顧」,台灣水利,44(1):92-105。
9.徐義人、詹明勇(1996),「水庫入流量之即時預測」,台灣水利,44(2):47-53。
10.陳永祥、吳建民、洪銘堅(1997),「模糊理論於水庫水質綜合評判之應用」,台灣水利,45(1):33-45。
11.陳昶憲、黃偉民、朱益辰(1997),「烏溪流域洪流時序分析」,台灣水利,45(3):72-82。
12.陳昶憲、楊朝仲(1998),「時序類神經集水區洪水預測模式」,台灣水利,46(1):84-98。
13.陳建宏、陳昶憲、蔡國慶(1998),「雨量因子在模糊類神經洪水位預報之影響研究」,第九屆海水利工程研討會論文集,pp.I133-I140。
14.陳莉(2000),「遺傳演算法與其應用於優選翡翠水庫規線之研究」,台灣水利,48(1):48-58。
15.王如意、周建明(2001),「應用小波轉換於降雨-逕流歷程之模擬」,台灣水利,49(3):1-13。
16.陳莉、簡大為(2001),「逕流量推估之研究」,台灣水利,49(4):55-67。
17.洪益發、梁昇(2001),「以類神經網路預測河川短期距流量」,中華水土保持學報,32(3):215-225。
18.江衍銘、張麗秋、張斐章(2002),「回饋式類神經網路於二階段即時流量預測」,台灣水利,50(2):15-21。
19.洪益發、梁昇(2002),「應用基因演算法優選水資源調配策略」,台灣水利,50(2):59-68。
20.李允中、王小璠、蘇木春 (2003),「模糊理論及其應用」,全華科技圖書股份有限公司,pp.2-25。
21.洪益發、梁昇(2003),「集水區旬流量預測研究」,水土保持學報,35(2):171-186。
22.陳昶憲、劉錦蕙、楊美美、陳韋佑(2003),「時序與灰色時流量預測模式效能比較」,台灣水利,51(4):68-78。
23.洪益發、梁昇(2003),「以基因演算法優選流量單位歷線」,水土保持學報,35(4):395-412。
24.王如意、潘宗毅、宋文元(2004),「遞迴式類神經網路之系統識別及其於降雨逕流模擬之應用」,台灣水利,52(4):1-30。
25.林昭遠、林鶴儒、劉昌文(2004),「陳有蘭溪集水區降雨-逕流模式動態分析系統建置之研究」,水土保持學報,36(3):243-258。
26.Bedient, P. B., and W. C. Huber (1998), Hydrology and Floodplain Analysis, Addison-Wesley Publishing Company, pp.79-95.
27.Cheng, J. D., Y. C. Huang, H. L. Wu, J. L. Yen, and C. H. Chang (2005), Hydro meteorological and landuse attributes of debris flow and debris floods during typhoon Toraji July 29-31 in Taiwan, Journal of Hydrology, 306:161-173.
28.Chiang, Y. M., L. C. Chang, and F. J. Chang (2004), Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling, Journal of Hydrology, 290:297-311.
29.Chiang, Y. T. (1993), The backpropagation algorithm and group method of data handing for forecasting, Master thesis of Asian Institute of Technology, Bangkok, Thailand.
30.Chow, V. T., D. R. Maidment, and L. W. Mays (1998) , Applied Hydrology, McGraw-Hill International Editions, pp.201-236.
31.Corradini, C., R. Morbidelli, C. Saltalippi, and F. Melone (2004), Flood forecasting and infiltration modeling, Hydrological Sciences, 49(2), April.
32.Coulibaly, P., F. Anctil, and B. Bobee (2000), Daily reservoir inflow forecasting using artificial neural networks with stopped training approach ,Journal of Hydrology, 230:244-257.
33.Garrote, L., and R. L. Bras (1995), A distributed model for real-time flood forecasting using digital elevation models , Journal of Hydrology, 167:279-306.
34.Gen, M., and R. Cheng (1997), Genetic Algorithms and Engineering Design, John Wiley & Sons, Inc, pp.1-41.
35.Hromadka Ⅱ, T. V. (2000), A unit hydrograph rainfall-runoff model using Mathematica, Environmental modeling and software, 15:151-160.
36.Hughes, D. A. (2004), Incorporating groundwater recharge and discharge functions into an existing monthly rainfall-runoff model, Hydrological Sciences, 49(2), April.
37.Hundecha, Y., and A. Bardossy (2004), Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model, Journal of Hydrology, 292:281-295.
38.Iorgulescu, I., and K. J. Beven (2004), Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling, Water Resour. Res., 40, W08403, doi: 10.1029/2004WR003094.
39.Jain, A., and S. Srinivasulu (2004), Development of effective and efficient rainfall-runoff models using integration of deterministic real-coded genetic algorithms and artificial neural network techniques, Water Resour. Res., 40, W04302, doi: 10.1029/2003WR 002355.
40.Lardet, P., and C. Obled (1994), Real-time flood forecasting using a stochastic rainfall generator, Journal of Hydrology, 230:244-257.
41.Lin, G. F., and Y. M. Wang (1996), General stochastic instantaneous unit hydrograph, Journal of Hydrology, 182:227-238.
42.Lin, G. F., and L. H. Chen (2004), A non-linear rainfall-runoff model using radial basis function network, Journal of Hydrology, 289:1-8.
43.Lin, M. L., and F. S. Jeng (2000), Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan-typhoon Herb, Engineering Geology, 58:191-207.
44.Luk, K. C., J. E. Ball, and A. Sharma (2000), A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting, Journal of Hydrology, 227:56-65.
45.Maria, C. M., G. M. Wenceslao, F. B. Manuel, P. S. Jose Manuel, and L. C. Roman (2004), Modeling of the monthly and daily behavior of the runoff of the Xallas river using Box-Jenkins and neural networks methods, Journal of Hydrology, 296:38-58.
46.Moradkhani, H., K. L. Hsu, H. V. Gupta, and S. Sorooshian (2004), Improved streamflow forecasting using self-organizing radial basis function artificial neural networks, Journal of Hydrology, 295:246-262.
47.Nalbantis, I., Ch. Obled, and J. Y. Rodriguez (1995), Unit hydrograph and effective precipitation identification, Journal of Hydrology, 168:127-157.
48.Nayak, P. C., K. P. Sudheer, D. M. Rangan, and K. S. Ramasastri (2004), A neuro-fuzzy computing technique for modeling hydrological time series, Journal of Hydrology, 291:52-66.
49.Pan, T. Y., and R. Y. Wang (2004), State space neural networks for short term rainfall-runoff forecasting, Journal of Hydrology, 297:34-50.
50.Rao, A. R., and W. Tirtotjondro (1995), Computation of unit hydrographs by a Bayesian method, Journal of Hydrology, 164:325-344.
51.Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube (2004), Modeling of the daily rainfall-runoff relationship with artificial neural network, Journal of Hydrology, 285:96-113.
52.Shamseldin, A. Y., K. M. Oconnor, and G. C. Liang (1997), Methods for combining the outputs of different rainfall-runoff models, Journal of Hydrology, 197:203-229.
53.Smith, M. B., V. I. Koren, Z. Zhang, S. M. Reed, J.-J. Pan, and F. Moreda (2004), Runoff response to spatial variability in precipitation: an analysis of observed data, Journal of Hydrology, 298:267-286.
54.Su, N. (1995), The unit hydrograph model for hydrograph separation, Environmental International, 21(5):509-515.
55.Tomasino, M., D. Zanchettin, and P. Traverso (2004), Long-range forecasts of River Po discharges based on predictable solar activity and a fuzzy neural network model, Hydrological Sciences, 49(4), August.
56.Toth, E., A. Brath, and A. Montanari (2000), Comparison of short-term rainfall prediction models for real-time flood forecasting, Journal of Hydrology, 239:132-147.
57.Wardlaw, R., and M. Sharif (1999), Evaluation of genetic algorithms for optimal reservoir system operation, Journal of Water Resources Planning and Management, 125(1): 25-33.
58.Yen, J., and R. Langari (1999), Fuzzy Logic intelligence, control, and information, Prentice-Hall, Inc., pp. 44-46.
59.Yu, P. S., S. T. Chen, C. C. Wu, and S. C. Lin (2004), Comparison of grey and phase-space rainfall forecasting models using a fuzzy decision method, Hydrological Sciences, 49(4), August.
60.Yue, S., and M. Hashino (2000), Unit hydrographs to model quick and slow runoff components of streamflow, Journal of Hydrology, 227:195-206.
61.Zhao, B., Y. K. Tung, K. C. Yeh, and J. C. Yang (1997), Storm resampling for uncertainty analysis of a multiple-storm unit hydrograph, Journal of Hydrology, 194:366-384.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top