跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃信霖
研究生(外文):Hsin-Lin Huang
論文名稱:3D彩色乳房超音波的腫瘤診斷
論文名稱(外文):Tumor Diagnosis for 3-D Power Doppler Breast Ultrasound
指導教授:張瑞峰張瑞峰引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:52
中文關鍵詞:乳房超音波血管分布型態特徵電腦輔助診斷系統三維距離圖
外文關鍵詞:ultrasoundvascularitymorphological featurescomputer-aided system3-D distance map
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於乳房3-D彩色都卜勒 (Doppler)超音波成像技術可以成功地偵測血管資訊,所以近年來廣泛地利用血管生長分布來幫助醫生診斷腫瘤,研究也發現血管分布在腫瘤生長、惡化與轉移過程中上扮演著重要的角色。一般而言,惡性腫瘤在生長期時需要較多且複雜的血管以供給足夠的養分。而過去相關的研究只利用血管點數的多寡作為診斷的依據,然而更可以利用血管資訊的形態特徵來分析血管的生長情形。在此篇論文中,將著重於分析以腫瘤邊界向內及向外各一段距離所構成頻帶空間中,其內部血管的型態特徵來診斷腫瘤的良惡性。我們提出電腦輔助診斷系統將使用乳房3-D彩色都卜勒超音波成像技術,此種影像資料可被解碼成腫瘤的灰階影像與包含血管資訊的血管影像。首先,將灰階影像用level set方法切割出腫瘤輪廓並利用切出的腫瘤輪廓算出對應的三維距離圖;接著再利用三維細線化演算法取得血管骨幹。利用三維距離圖以及血管骨幹後,可以計算出距腫瘤輪廓特定範圍的帶狀區域內其中的血管型態特徵。最後再利用二元邏輯回歸方法結合血管型態特徵來判斷乳房腫瘤的良惡性。實驗總共分析119個乳房腫瘤病例,其中包含66個良性腫瘤和53個惡性腫瘤。根據實驗結果,發現我們所提出的方法區能區別腫瘤良惡性達到準確性84.03%、敏感性84.91%、專一性83.33%以及Az值0.9104。

Since the Doppler ultrasound (US) is successfully applied for detecting the blood flow, the studies of tumor vascularity have played important roles to diagnose diseases of breast recently. The tumor vascularity is critical for growth, invasion, and metastasis. In general, malignant tumors need more complex blood vessels to obtain sufficient nutrients for growing. In the past, researches about vascularity just count the number of vascular pixel or voxel to analyze the malignancy of tumor. However, the morphology characteristic can be employed to provide more important diagnosis information. In this paper, we demonstrate a computer-aided diagnostic (CAD) system for three-dimensional (3-D) power Doppler breast US image that can quantify vascular morphology in a region within the fixed distance inside and outside the tumor. At first, the tumor is segmented by a 3-D level set method and the 3-D distance map could be computed based on the segmented tumor contour. After the skeleton of blood vessels is extracted by using a 3-D thinning algorithm, the morphological features can be calculated for the vessels in the band at the fixed distance to the tumor contour based on the 3-D distance map. Finally, the extracted vascular features are used for the binary logistic regression model to classify the malignancy of the tumor. In our experiments, 119 lesions containing 66 benign tumors and 53 malignant tumors, are used to test the accuracy of our proposed computer-aided system. From the experimental results, we could find that the proposed method has better performance than the conventional method. Moreover, the proposed method could achieve a high performance with the accuracy, sensitivity, specificity and Az value being 84.03% (100/119), 84.91% (45/53), and 83.33% (55/66), 0.9104 respectively.

口試委員會審定書 i
ACKNOWLEDGEMENTS ii
摘  要 iii
ABSTRACT v
TABLE OF CONTENT vii
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Material 4
2.1 Patients and Lesion Characters 4
2.2 Data Acquisition 4
Chapter 3 Proposed Method 7
3.1 Tumor Segmentation 8
3.1.1 The Contrast-enhanced Gradient Image 9
3.1.1.1 Sigmoid Filter 9
3.1.1.2 Sigma Edge-preserving Smoothing Filter 10
3.1.1.3 Gradient Magnitude Filter 11
3.1.2 Level Set Method 12
3.1.3 Post-processing 15
3.2 Vascular Features for Power Doppler Image 16
3.2.1 Vessel Pixel Extraction 17
3.2.2 Vessel Skeleton Extraction 17
3.3 Vascular Features 19
3.3.1 3-D Distance Map 20
3.3.2 Morphological Features 21
Chapter 4 Experimental Results 27
4.1 Statistic Analysis 28
4.2 Feature Analysis 29
4.3 Tumor Classification 30
4.4 Discussion 45
Chapter 5 Conclusion and Future Works 48
References 50


[1]C. Holcombe, et al., "Blood-flow in breast-cancer and fibroadenoma estimated by color doppler ultrasonography," British Journal of Surgery, vol. 82, pp. 787-788, Jun 1995.
[2]K. K. Hunt, Breast cancer. New York: Springer-Verlag, 2001.
[3]S. W. Lee, et al., "Role of color and power doppler imaging in differentiating between malignant and benign solid breast masses," Journal of Clinical Ultrasound, vol. 30, pp. 459-464, Oct 2002.
[4]P. L. Carson, et al., "3-d color doppler image quantification of breast masses," Ultrasound in Medicine and Biology, vol. 24, pp. 945-952, Sep 1998.
[5]J. Kettenbach, et al., "Computer-assisted quantitative assessment of power doppler us: Effects of microbubble contrast agent in the differentiation of breast tumors," European Journal of Radiology, vol. 53, pp. 238-244, Feb 2005.
[6]R. F. Chang, et al., "Solid breast masses: Neural network analysis of vascular features at three-dimensional power doppler us for benign or malignant classification," Radiology, vol. 243, pp. 56-62, Apr 2007.
[7]S. F. Huang, et al., "Analysis of tumor vascularity using three-dimensional power doppler ultrasound images," IEEE Transactions on Medical Imaging, vol. 27, pp. 320-330, Mar 2008.
[8]H. Madjar and J. Jellins, The practice of breast ultrasound : Techniques, findings, differential diagnosis. Stuttgart ; New York: Thieme, 2000.
[9]J. L. del Cura, et al., "The use of unenhanced doppler sonography in the evaluation of solid breast lesions," American Journal of Roentgenology, vol. 184, pp. 1788-1794, Jun 2005.
[10]M. A. Hayat, Cancer imaging: Lung and breast carcinomas. Burlington, MA: Elsevier, 2008.
[11]S. Osher and J. A. Sethian, "Fronts propagating with curvature-dependent speed - algorithms based on hamilton-jacobi formulations," Journal of Computational Physics, vol. 79, pp. 12-49, Nov 1988.
[12]R. Malladi, et al., "Shape modeling with front propagation - a level set approach," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 158-175, Feb 1995.
[13]J. S. Suri, et al., Advances in diagnostic and therapeutic ultrasound imaging. Norwood, MA: Artech House, 2008.
[14]J. S. Lee, "Digital image smoothing and the sigma filter," Computer Vision Graphics and Image Processing, vol. 24, pp. 255-269, 1983.
[15]R. C. Gonzalez, et al., Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2008.
[16]K. Palagyi and A. Kuba, "A thinning algorithm to extract medial lines from 3d medical images," Information Processing in Medical Imaging, vol. 1230, pp. 411-416, 1997.
[17]K. Palagyi and A. Kuba, "A 3d 6-subiteration thinning algorithm for extracting medial lines," Pattern Recognition Letters, vol. 19, pp. 613-627, May 1998.
[18]A. K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[19]A. Rosenfel and J. L. Pfaltz, "Sequential operations in digital picture processing," Journal of the ACM, vol. 13, pp. 471-&, 1966.
[20]W. C. Shen, et al., "Breast ultrasound computer-aided diagnosis using bi-rads features," Academic Radiology, vol. 14, pp. 928-939, Aug 2007.
[21]D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000.
[22]E. Alpaydin, Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004.
[23]A. P. Field, Discovering statistics using spss, 3rd ed. Los Angeles: SAGE Publications, 2009.
[24]I. Kononenko, "Estimating attributes: Analysis and extensions of relief," presented at the Proceedings of the European conference on machine learning on Machine Learning, Catania, Italy, 1994.
[25]K. Kira and L. A. Rendell, "A practical approach to feature selection," presented at the Proceedings of the ninth international workshop on Machine learning, Aberdeen, Scotland, United Kingdom, 1992.
[26]R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, pp. 273-324, Dec 1997.
[27]W. C. Shen, et al., "Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (bi-rads)," Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007.
[28]N. Bhooshan, et al., "Cancerous breast lesions on dynamic contrast-enhanced mr images: Computerized characterization for image-based prognostic markers," Radiology, vol. 254, pp. 680-690, 2010.
[29]S. Bahri, et al., "Can dynamic contrast-enhanced mri (dce-mri) predict tumor recurrence and lymph node status in patients with breast cancer?," Annals of Oncology, vol. 19, pp. 822-U2, 2008.
[30]J. H. Chen, et al., "Estrogen receptor and breast mr imaging features: A correlation study," Journal of Magnetic Resonance Imaging, vol. 27, pp. 825-833, 2008.
[31]Y. Ikedo, et al., "Development of a fully automatic scheme for detection of masses in whole breast ultrasound images," Med Phys, vol. 34, pp. 4378-88, Nov 2007.
[32]K. M. Kelly, et al., "Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts," European Radiology, vol. 20, pp. 734-742, 2010.
[33]R. F. Chang, et al., "Rapid image stitching and computer-aided detection for multipass automated breast ultrasound," Medical Physics, vol. 37, pp. 2063-2073, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top