跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昇衡
研究生(外文):Seng-Heng Lin
論文名稱:高總有機碳原水處理之研究
論文名稱(外文):Research of high organic carbon contained water treatment
指導教授:葉宣顯
指導教授(外文):Hsuan-Hsien Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:118
中文關鍵詞:消毒副產物溶解性有機物MIEX離子交換樹脂
外文關鍵詞:MIEX resinDisinfection by-products.Dissolved organic compounds
相關次數:
  • 被引用被引用:12
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:2
  原水中存在過量有機物時,會於淨水處理程序中與所加入之氯反應生成三鹵甲烷等類消毒副產物(Disinfection by-products , 簡稱DBPs)。此外,有機物也會與水中鐵離子產生錯合作用,增加原水中鐵之濃度,而有造成紅水現象之可能。本研究係以去除溶解性有機物為主之陰離子交換樹脂MIEX DOC為研究對象,首先比較MIEX程序與直接混凝、加強混凝及預氯混凝對有機物去除及THM生成控制效率之差異。其次探討MIEX作為混凝或預氯混凝程序前處理之功用。並由有機物與鐵錯合之現象,探討發生紅水之可能原因。
  首先利用實驗設計方法,探討pH、接觸時間、攪拌速度、MIEX樹脂劑量對東港溪原水有機參數NPDOC之影響,其結果顯示MIEX劑量為主要影響因子,而其他三個因子之影響則相對較不明顯。其次是針對東港溪、太湖及榮湖三種原水進行一般水質分析,並以太湖及榮湖原水進行有機物親疏水性分離;同時,將三種原水以不同MIEX劑量處理,比較其最佳劑量之差異性。分析結果顯示,雖然三種原水之NPDOC含量差異相當大,但其成分都是以親水性有機物為主。太湖、榮湖及東港溪原水經MIEX處理後,在最佳劑量下NPDOC去除率各為55.4、 43.4及29.4%,有機物去除率可能受原水中存在有機物種類及背景鹽之影響。
  在MIEX處理與單獨混凝處理對有機物去除之比較上,因為所試驗原水中親水性有機物所佔比例較高,而MIEX所去除之有機物又是以親水性為主,所以MIEX處理對於NPDOC之去除率比混凝處理高出許多。原水經MIEX處理後再以混凝處理,比起單獨MIEX處理,所增加之NPDOC去除率則相當有限。至於加強混凝方面,無論原水是否經MIEX處理,以改變pH值方式之加強混凝所增加之NPDOC去除效果都不明顯。在加氯處理方面,由於加氯會造成疏水性有機物轉換為親水性有機物,不利於混凝去除。而原水經MIEX處理後,則能減少需氯量,降低加氯對混凝之負面影響。
  在原水直接加氯與原水經MIEX或混凝後再加氯對於THM生成之比較上,太湖原水經混凝及MIEX處理後再加氯,THM之生成較原水直接加氯可減少39及63%,而榮湖則減少34及35%。榮湖原水經MIEX處理可能受到硫酸鹽與有機物前質競爭交換位址之影響,加氯後THM減少率較低。而MIEX與混凝串聯使用後再加氯,則兩原水THM之減少率皆高於85%,其處理水之總三鹵甲烷濃度皆很容易就能達到0.1mg/L以下之目前飲用水水質標準。
  至於THM生成物種上之差異,太湖原水經加氯後生成THM以含氯物種為主,而榮湖原水則以含溴物種濃度較高。其差異之原因可由後者之高導電度,推測水中含有較高濃度溴化物解釋之。直鏈狀脂肪族之親水性有機物較易與溴反應生成含溴THM,而芳香族疏水性有機物較易與氯反應生成含氯THM,故原水經MIEX處理後加氯所生成之THM中含溴物種所佔比例更進一步減少。
  在有機物與鐵錯合之探討上,由實驗結果顯示太湖及榮湖原水中確實含有高量之錯合鐵。而由原水經MIEX處理後錯合鐵濃度大量減少之情形,可以看出當MIEX去除水中有機物時,錯合之鐵亦會一併被去除,此結果應有助於紅水生成之控制。
  The existence of excessive organic substance in source water may cause the formation of disinfection by-products (DBPs), which are formed from the reactions between chlorine and organic substance. Moreover, organic may interfere with iron removal in water treatment because of complexation between iron and organic. This research is to study the effectiveness of using magnetic ion exchange resin (MIEX) for dissolved organic removal. First, the organic removal efficiency among various processes, such as MIEX process, conventional coagulation, enhanced coagulation, and coagulation preceded by chlorination, were compared. Next, the functions of MIEX pretreatment on conventional coagulation or prechlorination-coagulation were also probed.
  First, experimental design was employed to screen the factors, namely pH value, MIEX dose, contact time, and mixing intensity, to see which is more important to dissolved organic removal by MIEX. The results show that MIEX dose is the most important factor, while the effect of others was insignificant. Next, the source waters from Dong-Gung River, Tai Lake, and Rong Lake were collected and water quality analyzed. All these waters were treated by MIEX resin under various dosages. The results show that the dissolved organic contents of these three waters were all dominated by hydrophilic organic, in spite of vast difference in NPDOC concentration. The Rong Lake has the highest NPDOC value, Tai Lake next, while Dong-Gung River has much lower value. After treated by MIEX alone, the NPDOC removal rates at optimum dosage for Tai Lake, Rong Lake, and Dong-Gung River were 55.4, 43.4, and 29.4%, respectively. The type and initial concentration of dissolved organic, and background ionic concentrations, such as those contributed by chloride and sulfate, may affect organic removal by MIEX.
  Comparing the dissolved organic removal between MIEX and alum coagulation, it was found that the removal rate of MIEX was much higher than that of coagulation. This probably is due to high fraction of hydrophilic organic in those source water tested, and the fact that coagulation mainly removes hydrophobic organic, while MIEX prefers hydrophilic fraction. When MIEX-treated water was further coagulated with alum, the part of organic removed by coagulation was limited. For enhanced coagulation, which was coagulation conducted at lower pH value, the increase in organic removal compared to conventional coagulation was also limited, no matter it was conducted separately or preceded by MIEX treatment. Prechlorination would retard the organic removal efficiency of coagulation, because the transfer of hydrophobic organic into hydrophilic ones. Nevertheless, MIEX treatment preceded chlorination could reduce chlorine demand
  Comparing THM formation of direct chlorination of source waters and chlorination of those treated water after MIEX or/and coagulation, for Tai Lake, the THM reduction rates for conventional coagulation and MIEX treatment were 39 and 63 %, respectively. For Rong Lake, the corresponding reduction rates were 34 and 35 %, respectively. The lower rate of THM reduction by MIEX may be due to the existence of high sulfate concentration, which would compete with the THM precursor for the exchange sites on MIEX. For MIEX coupled with coagulation process, the THM reduction rates for the two source waters were all higher than 85 %, and the treated water, therefore, could easily meet the current THM regulation, which is 0.1 mg/L.
  As far as the THM species are concerned, for the direct chlorinated source waters, those from the Tai Lake were dominated by chlorine-containing species, while those from Rong Lake by bromine-containing species. This can be explained by the high conductivity, and, therefore, high bromide concentration of the Rong Lake. However, for the MIEX treated water, THM concentration shared by Br-containing species was decreased. This probably is due to the higher removal rate of hydrophilic than hydrophobic organic by the MIEX, and the preference of hydrophobic aromatic precursors to undergo chlorination rather than bromination.
  The results from this study indicate the existence of substantial amount of organic-complexed iron in both Tai Lake and Rong Lake waters. However, the complexed iron was found to be removed by MIEX, simultaneously with organic removal. Therefore, MIEX treatment may also be helpful in preventing red water.
第一章 前言…………………………………………………………1
1-1 研究緣起……………………………………………………… 1
1-2 研究目的……………………………………………………… 2

第二章 文獻回顧……………………………………………………3
2-1 自然水體中有機物之分類及其性質………………………… 3
2-1-1 原水中有機物質之替代參數……………………………… 5
2-1-2 有機物質之濃縮分離……………………………………… 6
2-2 有機物在傳統淨水程序中之變動…………………………… 8
2-2-1 有機物之混凝去除………………………………………… 8
2-2-2 氯與水中有機物之反應途徑………………………………11
2-3 消毒副產物之控制及加強混凝………………………………16
2-3-1 消毒副產物之控制…………………………………………16
2-3-2 加強混凝(Enhanced coagulation)………………………17
2-4自來水淨水處理鐵之問題…………………………………… 21
2-4-1 淨水廠鐵之去除……………………………………………22
2-4-2 鐵與有機物錯合之影響………………………………… 23
2-5 MIEX之性質及其運用…………………………………………25
2-5-1 離子交換樹脂之一般特性……………………………… 25
2-5-2 MIEX樹脂特性…………………………………………… 27
2-5-3 MIEX DOC樹脂處理程序………………………………… 27
2-5-4 MIEX程序處理效果之相關研究………………………… 29
2-5-5 MIEX 實廠應用例………………………………………… 31

第三章 實驗程序、材料及方法………………………………… 33
3-1 實驗流程之規劃………………………………………………33
3-1-1 MIEX樹脂之取得………………………………………… 33
3-1-2 實驗設計……………………………………………………33
3-1-3 比較不同背景水質原水之MIEX處理效率……………… 35
3-1-4 單獨MIEX處理與單獨混凝劑處理之比較……………… 35
3-1-5比較不同處理程序對原水中有機物之去除及三鹵甲烷生成之
控制………………………………………………………… 36
3-2 實驗方法……………………………………………………… 38
3-2-1 有機物親疏水性分離……………………………………… 38
3-2-2 MIEX接觸反應…………………………………………… 40
3-2-3 混凝瓶杯試驗……………………………………………… 41
3-3 重要水質參數之分析方法…………………………………… 42
3-3-1 餘氯(residual chlorine)之分析…………………………42
3-3-2 非揮發性溶解性有機碳(Non-Purgable Dissolved Organic Carbon, NPDOC)之分析…………………………………… 42
3-3-3 總三鹵甲烷(Total trihalomethane, TTHMs)之分析……43
3-3-4 UV254吸光值……………………………………………… 46
3-3-5 鹼度(alkalinity)之分析………………………………… 46
3-3-6 pH值及導電度(Conductivity)…………………………… 47
3-3-7 濁度之分析………………………………………………… 47
3-3-8 氯離子與硫酸根離子(Cl- & SO42-)………………………48
3-3-9 鐵(Iron)之分析…………………………………………… 49
3-3-10 色度(Color)之分析……………………………………… 50

第四章 結果與討論…………………………………………………51
4-1 MIEX最佳操作條件之決定…………………………………….51
4-2 原水水質特性………………………………………………… 54
4-2-1 原水一般水質特性………………………………………… 54
4-2-2 溶解性有機物親疏水性分離結果……………………… 54
4-3 MIEX處理與單獨混凝處理之比較…………………………… 58
4-3-1 不同原水經MIEX處理之結果……………………………… 58
4-3-2 MIEX處理與單獨混凝之比較………………………… 68
4-4原水經不同處理程序之比較……………………………………73
4-4-1 直接混凝與之加強混凝比較……………………………… 73
4-4-2 加氯對各處理程序有機物去除之影響…………………… 75
4-5 MIEX對THM之影響…………………………………………… 79
4-5-1 THM生成及結果…………………………………………… 79
4-5-2 MIEX處理對THM生成物種之影響………………………… 81
4-6 有機物錯合鐵於處理程序中之變動………………………… 84

第五章 結論與建議…………………………………………………87
5-1 結論…………………………………………………………… 87
5-2 建議…………………………………………………………… 88

參考文獻…………………………………………………………… 89
Amy, G. L. (1993) "Using NOM Characterization for the Evalution of Treatment" Proceedings of the AWWA Research foundation/Lyonnaise Des Eaux Dumez Workshop, Chamonix, France, September 19~22.

Amy, G. and Debroux, J. (1998) "National Organic Matter (NOM) in Watersheds," Paper presented at the Panel Discussion of the 4th International Workshop on Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan, R. O. C.

Amy, G. et al. (1998) "Occurrence of Disinfection By-products (DBPs) Precursors in Source Waters and DBPs in Finished Waters," Paper presented at the 4th International Workshop on Drinking Water Quality Management and Treatment Technology, Taipei, Taiwan, R. O. C.

Anderson, R.,(1988) Handbook of Separation Techniques for Chemical Engineers.2nd ed.,McGraw-Hill Inc., New York, pp.1-404.

APHA, AWWA, WEF, (1998) Standard Methods for the Examination of Water and Wastwater, 20th ed.

AWWA Reasearch Foundation (1993) Characterization of Natural Organic Matter and Its Relationship to Treatability, Denver, Colorado.

AWWA Reasearch Foundation (1993) Impacts of Dissolved Organic Carbon on Iron Removal, U.S.A.

AWWA (1999) Water Quality and Treatment, McGraw-Hill, New York, p. 6.4

Babcock, D. S. and Singer, P. C. (1979) "Chlorination and Coagulation of Humic and Fulvic Acids," Jour. AWWA, Vol. 71, No. 3, p. 149.

Baliga, K. Y. (1969) Biologically Mediated Chemical Changes in Filteration of Aerated Ground Waters, Doctoral Dissertation, University of Illinois.

Bellar, T. A. et al. (1978) "The Occurence of Organohalides in Finished Drinking Water," Jour. AWWA, Vol. 70, No. 7, pp. 703-706.

Beefield, L. D.,Judkins J. F. and Wwand B. L.(1982) Process Chemistry For Water and Wastewater Treatment.

Bennett, L. E. and Drikas, M. (1993) "The evalation of colour in natural waters" wat. Res, Vol.27, No07, pp1209~1218

Bourke, M., Harrison, S., Long, B. and Lebeau, T. (2001) "MIEX Resin Pretreatment Followed by Microfiltration as an Alternative to Nanofiltration for DBP Precursor Removal," Proceedings of AWWA Membrane Technology Conference.

Box, G. E.,Hunter, W. G.. and Hunter, J. S. (1978) Statistics for Experiments. Wiley, New York

Braester, C., Martinell, R.(1988) "Modelling of flow and transport processes in Vyredox and Nytredox subsurface treatment plants," Wat. Sci. Tech. Vol. 20, No. 3, 165-172

Boyce, S. D. and Hornig, J. F.(1983) "Reaction Pathways of Trihalomethane Formation from the Halogenation of Dihydroxy Aromatic Model Compounds for Humic Acid," Environ. Sci. Technol., Vol. 17, No. 4, pp. 202~210.

Breland, E. D. and Robinson, L. R. (1967) "Iron and Manganess Removal from Low Alkalinity Groundwaters" Report to the Water Resources Research Institute, Mississippi Stata University.

Cadee, K., O’Leary, B., Smith, P., Slunjski, M. and Bourke, M. (2000) "World’s First Magnetic Ion Exchange (MIEX®) Water Treatment Plant to be Installed in Western Australia," Proceeding of AWWA Conference, June 11~15, Denver, USA.

Christman, R. F., Johnson J. D., Hass, J. R., Pfaender, F. K., Liao, W. T., Norwood, D. L., and Alexander, H. J., (1978) "Natural and Model Aquatic Humics: Reactions with Chlorine," Water Chlorination: Environmental Impact and Health Effects, Vol. 3, R. L Jolley, ed., Ann Arbor Science, Ann Arbor, MI.

Christman, R. F. et al. (1983) "Identity and Yields of Major Halogenated Products of Aquatic Fulvic Acid Chlorination," Environmental & Science Technology, Vol. 17, No. 10.

Christman R. F., Norwood D. L., Seo Y. and Frimmel F. H. (1989) Oxidative Degradation of Humic substances from Freshwater Environments. Humic Substances II in Search of Structure, M. H. B. Hayes, P. MacCarthy ﹠ R.L. Malcolm, eds., John Wiley & Sons, Chchester.

Committee Report (1979) "Organics Removal by Coagulation : A Review and Research Needs," Jour. AWWA, Vol. 71, No.10, pp.588-603.

Croue, J. P., Viollean, D. and Labouyrite, L.(2000) "Disinfection By-Product Formation Potentials of Hydrophobic and Hydrophilic Natural Organic Matter Fraction: A Comarison between a Low and high Hmic water," Natural Organic Matter and Disinfection By-Products, Barrett, S.E., Krasner, S. W. and Amy, G. L.,eds., ACS, Washington, DC.

Cook, D., Chow, G. and Drikas, M. (2001) "Laboratory Study of Conventional Alum Treatment versus MIEX Treatment for Removal of Natural Organic Matter," Proceedings of the 19th Federal AWA Convention, April 1~4, Canberra, Australia.

Cromely, J. T. and O’Connor, J. T. (1976) "Effect of Ozonation on the Removal of Iron from a Groundwater" Jour. AWWA, Vol. 68, No. 6, pp.315-319.

Crow, D.R. (1988) Principles and Applications of Electrochemistry 3rd ed., Bristol.
DeHek, H. (1978) "Hydrolysis-Precipitation Studies of Aluminum(III) Solution 3. The Role of the Sulfate Ion," Jour.Colloid & Interface Sci., Vol. 64, No. 1, pp.72-80.

Dempsey, B. A. et al. (1984) "The Coagulation of Humic Substances by Means of Aluminum Salts," Jour. AWWA, Vol. 76, No. 4, p.141.

Dempsey, B. A. et al. (1985) "Polyaluminum Chloride and Alum Coagulation of Clay-Fulvic Acid Suspensions," Jour. AWWA, Vol. 77, No. 3, p.74.

Edwards, G. A., Amirtharajah, A. (1985) "Removing Color Caused by Humic Acids," Jour. AWWA, Vol. 77, No. 3, pp.50-57.

Edzwalds, J. K. and Tobiason, J. E. (1999) "Enhanced Coagulation: US Reruirement and a Broader View" Wat. Sci. Tec. Vol. 40, No. 9, pp.63-70.

Fleischacker, S. J. and Randtke, S. J. (1983) "Formation of Organic Chlorine in Public Water Supplies," Jour. AWWA, Vol. 75, No. 3, p.132.

Heller-Grossman, L., Manka, J., Limoni-Relis, B., and Rebhun, M. (1993) "Formation and Distribution of Haloacetic acids, THM and TOX in Chlorination of Bromide-Rich Lake Water" Wat. Res., Vol. 27, No. 8, pp.1321-1331.

Hundt, T. R. and O'Melia, C. R. (1988) "Aluminum-Fulvic Acid Interactions: Mechanisms and Applications," Jour. AWWA, Vol. 80, No. 4, p.176.

Jacangela, J. G. et al. (1995)"Selected Processes for Removing NOM : an Overview," Jour. AWWA, Vol. 87, No. 1, pp.64-77.

J. M. M. Consulting Engineers. (1985) "Water Quality Criteria and Standard," Chapter 4 in Water Treatment Principles and Design. pp.63-78, Wiley-Interscience, New York.

J. M. M. Consulting Engineers. (1985) "Organics," Chapter 16 in Water Treatment Principles and Design. pp.352-373, Wiley-Interscience, New York.

Johnson, J. D. and Jensen, J. N. (1986) "THM and TOX Formation: Routes, Rates, and Precursors," Jour. AWWA, Vol. 78, No. 4, pp.156-162.

Jobin, R., Ghosh, M. M. (1972) "Effect of Buffer Intensity and Organic Matter on the Oxygenation of Ferrous Iron," Jour. AWWA, Vol. 64, No. 7, pp.590-596.
Kavanaugh, M. C. (1978) "Modified Coagulation for Improved Removal of Trihalomethane Precursors, Jour. AWWA, Vol. 66, pp.613-620.

Knocket, W. R., Conley, L., Van Benschoten, J. E. (1992) "Impact of Dissolved Organic Carbon on the Removal of Iron during Water Treatment" Wat. Res. Vol. 26, No. 11, pp.1515-1522.

Krasner, S. W., McGuire, . J., Jacangelo, J.G., Patania, N. L., Reagan, K. M. and Macro, A. E. (1998) "The Currence of Disinfection By-Products in U.S. Drinking Water" Jour. AWWA, Vol. 81, pp.41-53.

Lange, R., Tattersall, J., Botica, C. and Smith, P. (2001) "Design and Construction of the World’s First Large Scale MIEX® Water Treatment Plant," Proceedings of the 19th Federal AWA Convention, April 1~4, Canberra, Australia

Langlias, B., Reckhow D. A. and Brink, D.R. (1991) Ozone in Water Treatment: Application and Engineering, Chelseu, Mich: Lewis Publishers.

Larson, T. E.(1963) Mineral Content of Public Ground Water Supplies in Illinois, Illinois State Water urvey, Circ. 90, Urbang.

Leenheer, J. A. (1981) "Comprehensive Approach to Preparative Isolation and Fractionation of Dissolved Organic Carbon from Natural Waters and Wastewaters," Environ. Sci. & Technol., Vol. 15, No. 5, pp.578-587.
Lee, G. F. (1967) Principles and Applications of Water Chemistry, S. D. Faust and J.V. Hunted, eds., John Wiley, New York.

Lind, C. J. and Hem, J. D. (1975) Effect of Organic Soluts on Chemical Reations of Aluminum, USGS Water Suooly Paper 1827-G, Washington, D.C.

Loh, W. Y. (1992) "Identifiation of active contrasts in unreplicated factorial experiments," Computational Statistics and Data Analysis, Vol. 14, pp.135-148.

Margon, J. J.(1967) Chemical quilibria and Kinetic Properties of Manganess in Natural Water, Proc. 4th. Rudolfs Conference, Principles and Application of Water Chemistry, pp. 561-624, New York.

Morris, J. C. (1978) "Formation of Halogenated Organics by Chlorination of Water Supplies," in Water Chlorination: Environmental Impact and Health Effects, Vol. 2, R. L. Jolley et al., eds., Ann Arbor Science Publisher, Inc., Ann Arbor, MI, pp.29-48.

Morris, J.C. et al. (1981) "Precursors and Mechanisms of Haloform Formation in the Chlorination of Water Supplies," in Water Chlorination: Environmental Impact and Health Effect., Vol. 3, R.L. Jolley et al., eds., Ann Arbor Science Publisher, Inc., Ann Arbor, MI, pp.29-48.

Nick, H. et al.(1999) "Tailoring of 4-Vinylpyridine-Based Resins for Hydrolytic Degradation and Solubilisation,"Tetrahedron Vol. 55, No. 31, pp.9585-9594.

Nordell, E.(1961) Water Treatment 2th ed., New York.

Norwood, D. L. et al. (1980) "Reaction of Chlorine with Selected Aromatic Models of Aquatic Humic Material," Environ. Sci. & Technol., Vol. 14, No. 2, pp.187-189.

Oldham, W. F. and Gloyna, E. F. (1969) "Effect of Colored Organics on Iron Removal," Jour. AWWA, Vol. 61, No. 11, p.610.

O’Connor, J., Hash, L. and Edwards, A. B.(1975) "Deterioration of Water Quality in Distribution System" Jour. AWWA Vol. 67, No. 3, pp.113-120.

Pontius, F. W. (1997) "Expedited Microbial/Disinfection By-product Rules Defined", Jour. AWWA, Vol. 89, No. 10, p.20.

Pontius, F.W.(2003) Update on USEPA’s Drinking Water Regulations, Jour. AWWA, pp.57-68.

Randtke, S. J. (1988) "Organic Con-taminant Removal by Coagulation and Related Process Combination," Jour. AWWA, Vol. 80, No. 5, pp.40-50.

Rebhum, M. et al. (1988) "Trihalomethane Formation in High Bromide Lake Galilee Water," Jour. AWWA, Vol. 80, pp.84-90.

Rebhum M. et al. (1990) "THM Formation and Distribution in a Bromide Rich and Ammonia Containing Lake Water," in Water Chlorination: Environmental Impact and Health Effects, Jolley, R. L. et al., eds., Vol. 6, Lewis Chelsea. Mich., pp.665-680.

Reh, C. W. (1972) "Water Supply Engineering for the Removal of Iron and Nanganess" Proc. Water Quality Conference, University of Illinois, Urbana, IL.

Rook, J. J. (1974) "Formation of Haloforms during Chlorination of Nautural Water, "Water Treatment Exam., Vol. 23, No. 3, pp.234-239.
Rook, J. J. (1976) "Haloforms in Drinking Water,"Jour. AWWA, Vol. 68, No. 3, pp.168-172.

Rook, J. J. (1977) "Chlorination Reaction of Fulvic Acids in Natural Water," Environ. Sci. & Technol., Vol. 11, pp.478-482.

Schnitzer, W. (1976) "The Chemistry of Humic Substances," Environmental Biogeochemistry , J. O. Nriague ed., Vol. 1, Ann Arbor Science, Ann Arbor, MI.

Semmens, M. J., Barckhardt, M., Schuler, D., Davich, P., Slunjski, M., Bourke, M. and Nguyen, H. (2000) "An Evaluation of Magnetic Ion Exchange (MIEX®) for NOM Removal," Proceeding of AWWA annual Conference, Denver, CO.

Semmens, M. J. and Field, T. K. (1980) "Coagulation: Experiences in Organics Removal," Jour. AWWA, Vol. 72, No.8 , p.467

Shapiro, J. (1964) "Effect of Yellow Organic Acids on Iron and Other Metals in Water," Jour. AWWA, Vol. 56, No. 8, p.1062.

Singer, P. C. and Bilyk, K. (2000) "Enhanced Coagulation Using a Magnetic Ion Exchange Resin," Proceeding of AWWA Water Quality Technology Conference, Salt Lake City, Utah.

Singer, P. C. and Harrington, G. W. (1993) "Coagulation of DBP Precursors Theoretical and Practical Considerations," Proceedings AWWA WQTC, Miami, Florida, pp.1-19.

Sinsabaugh Ⅲ, R. L. et al. (1986) "Removal of Dissolved Organic Carbon by Coagulation with Iron Sulfate," Jour. AWWA, Vol. 78, NO. 5, p.74

Slunjski, M., Nguyen, H., Ballard, M., Eldridge, R., Morran, J., Drikas, M., O’Leary, B., and Smith, P. (2002) "MIEX®-Good Research Commercialised," Water (Journal of the Australian Water Association), Vol. 29, No. 2, pp. 42~51.
Slunjski, M., Bourke, M. and O’Leary, B. (2000a) "MIEX® DOC Process for Removal of Humics in Water Treatment," presented at IHSS (International Humic Substances Society)-Australia Chapter Seminar.

Slunjski, M., Cadee, K. and Tattersall, J. (2000b) "MIEX® Resin Water Treatment Process," Proceedings of Aquatech Amsterdam, September, Amsterdam, the Netherlands.

Snoeyink, V. L. and Jenkins, D. (1980) "Coordination Chemistry," Chapter 5 in Water Chemistry, John Wiley & Sons, Inc., New York.

Sommerfeld, E.O.(1999) Iron and Manganese Removal Handbook, AWWA Dedicated to Drinking Water.,Denver.

Stanbro, W. D. and Smith, W. D. (1978) "Kinetic and Mechanism of the Decomposition of N-Choroalanine in Aqueous Solution," Water Chlorination: Environmental Impact and Health Effects, Vol.1, R.L. Jolley, ed., Ann Hrbor Science, Ann Arbor, MI.

Stevens, A. A. et al. (1976) "Chlorination of Organics in Drinking Water," Jour. AWWA, Vol. 68, No. 11, p.615.

Stumm, W. and Lee, G. F. (1961) "Oxygenation of Ferrous Iron." Ind. And Engr. Chem., Vol. 53, No. 2, pp. 143-146.


Tambo, N., Kamei, T., and Itoh, H. (1989) "Evaluation of Extend of Humic Substance Removal by Coagulation,"Aquatic Humic Substances : Influence on Fate and Treatment of Pollutants, I. H. Suffet and P. MacCarthy eds., Advanced in Chemistry Series No. 219, American Chemical Society, pp.453-471.

Theis, T. L. and Singer, P. C. (1974) "Complexation of Iron(Ⅱ) by Organic Matter and It’s Effect on Iron(Ⅱ) Oxygenation" Environ. Sci., Vol. 8, No. 6, pp. 569-574.

Tierney, L. (1990) LISP-STAT:An Object-Oriented Environment for Statistial Computing and Dynamic Graphics. Wiley, New York.

Thurman, E. M. and Malcolm, R.L. (1981) "Preparative Isolation of Aquatic Humic Substances," Environ. Sci. & Technol., Vol. 15, pp.463-466.

Thurman, E. M. (1985) Organic Geochemistry of Nature Water, Martinus Nijhoff╱Dr. W. Junk Publishers, Dordrecht, the Netherlands, pp.15-17.

USEPA (1993) Guidance Manual for Enhanced Coagulation and Enhanced Precipitative Softening.

USEPA(1994) National Primary Drinking Water Regulations; Disinfectants and Disinfection By-products; Proposed Rule. Fed. Reg., 59: 145: 38668, July 29.
White, M. C. et al. (1997) "Evaluating Criteria for Enhanced Coagulation Compliance," Jour. AWWA, Vol. 89, No. 5, p. 64.

White, G. C. (1992) Handbook of Chlorination and Alternative Disinfectants, 3th ed.
W.H.O. (1993) Guidelines for Drinking-Water Quality 2nd ed.

Yeh, H. H. and Huang, W. J. (1993) "The Fate of Dissolved Organics in Water Purification Processes Treating Polluted Raw Water," Water Science and Technology, Vol. 27, No. 11, pp. 71-80

葉宣顯等(1991)「台灣南部地區受嚴重污染自來水水源有機物偵測與現有處理效率之研究」環保署委託研究計畫(EPA-80-E3J1-09-15)報告。

黃文鑑(1997) "混凝、吸附對溶解性有機物去除及受預氯影響之研究," 博士論文, 國立成功大學環境工程研究所, 台南.

環保署環境檢驗所 (1992)「水質檢驗方法彙編」
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top