跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴建宏
論文名稱:天然濁水混凝最適加藥量與顆粒表面界達電位之關係研究
論文名稱(外文):Relationship between optimal coagulant dosage and zeta potential of colloids for coagulation of Natural Turbid Water
指導教授:黃志彬黃志彬引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:水處理混凝界達電位濁度
外文關鍵詞:water treatmentcoagulationzeta potentialturbidity
相關次數:
  • 被引用被引用:6
  • 點閱點閱:522
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
在水處理單元中,混凝後顆粒的界達電位常被使用來做為衡量混凝劑之最適加藥量的指標,然而淨水廠中採集自地表水的原水,其水質條件變化幅度相當大,導致不同天然原水達到最適加藥時的界達電位範圍亦有所不同,故以界達電位作為最適加藥量決定之指標仍存有許多爭議。本論文之目的為研究天然原水的混凝過程中,最適加藥量與混凝加藥後顆粒的界達電位之間的關係;本研究之天然原水採集自新竹給水廠,使用之混凝劑為PACl,藉由瓶杯試驗求得最適混凝加藥量及利用界達電位儀量測快混後水樣之界達電位,同時量測此時混沉後之殘餘濁度;另外,個別分析原水的水質項目以探討其對混凝最適加藥量之影響。
研究結果顯示,原水的濁度及鹼度影響最適加藥量及界達電位最甚,而最適加藥量幾乎都出現在中性pH 時,且最適混凝劑量隨濁度升高而增加,此時顆粒的界達電位偏正電荷。此外,原水濁度影響原水鹼度與最適加藥量之間的關係相當顯著;在低濁度(0~50 NTU)時,最適混凝加藥量隨鹼度升高而增加,但在高濁度(300~2700 NTU)時,最適混凝加藥量隨鹼度升高而減少。

The zeta potential of coagulated particles is commonly used as an index to
evaluate the optimal dosage of coagulation in water treatment. However, the qualities
of raw water taken from surface turbid water by water treatment plant (WTP)
fluctuates immensely, resulting in variation of optimal zeta potential zone for
coagulation of different natural turbid water. Therefore, there are still many debates
on determination of the optimal dosage through the indication of zeta potential. The
goal of this study is to investigate the relationship between optimal dosage and zeta
potential of coagulated particles for coagulation of natural turbid water. Various
natural turbid water samples were collected from HsinChu WTP, and then each
coagulation test was conducted by PACl coagulant through jar test to determine the
optimal coagulant dosage and corresponding zeta potential by a zeta meter, in which
the residual turbidity of supernatant after sedimentation was measured. Various
parameters of raw water quality were further measured independently to study their
effect on determination of the optimal dosage.
The results showed that turbidity and alkalinity of raw water governs the optimal
dosage and corresponding zeta potential. The optimal dosage almost occurred at
neutral pH and increases with increase in turbidity of raw water, in which the optimal
zeta potential for turbidity removal was rather positive. Furthermore, the relationship
between alkalinity of raw water and the optimal dosage is strongly affected by
turbidity of raw water. The optimal dosage increases with increase in alkalinity for
coagulation of low turbidity water (0~50 NTU). By contrast, the optimal dosage
decreases with increasing alkalinity for coagulation of high turbidity water (300~2700
NTU).
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 混凝過程 3
2.1.1 顆粒的去穩定 4
2.1.2 顆粒去穩定的機制 6
2.2 聚氯化鋁的化學性質與混凝機制 8
2.2.1 化學性質 9
2.2.2 水質參數對聚氯化鋁之混凝機制的影響 14
2.3 界達電位與顆粒去穩定效果的關係 21
2.4 影響顆粒界達電位的因素 25
2.4.1 pH 值 25
2.4.2 離子強度 29
第三章 研究方法及步驟 31
3.1 材料與設備 33
3.1.1 天然原水 33
3.1.2 聚氯化鋁 33
3.1.3 實驗設備及分析儀器 33
3.2 研究方法 35
3.2.1 水質分析項目 35
3.2.2 瓶杯試驗 35
第四章 結果與討論 38
4.1 不同原水濁度的水質與顆粒特性 38
4.1.1 pH/鹼度 38
4.1.2 導電度 39
4.3.1 界達電位 39
4.2 顆粒快混後界達電位與混凝機制之關係 41
4.3 原水水質參數與最適加藥量的相關性 48
4.3.1 濁度 48
4.3.2 pH/鹼度 51
第五章 結論 55
第六章 建議 56
參考文獻 57
[1]Annadurai,G., Sung, S.S. and Lee, D.J (2004)“Simultaneous removal of turbidity and humic acid from high turbidity stormwater” Advances in Environmental Research, 8, 713-725.
[2]Chen, Z., Luan, Z., Jia, Z. and Li, X. (2009) “Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions” Journal of
Environmental Management, 90, 2831-2840.
[3]Duan, J. and Gregory, J. (2003) “Coagulation by hydrolysing metal salts” Advances in Colloid and Interface Science, 100-102, 475–502.
[4]Gao, B.Y., Yue, Q.Y., Wang, B.J. and Chu, Y.B. (2003)“Poly-aluminum-silicate-chloride (PASiC)-a new type of composite inorganic polymer coagulant” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 229, 121-127.
[5]Gao, B.Y., Chu, Y.B., Yue, Q.Y., Wang, B.J. and Wang, S.G. (2005) “Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content” Journal of Environmental Management, 76, 143-147.
[6]Gao, B., Chu, Y., Yue, Q. and Wang, Y. (2009) “Purification and characterization of Al13 species in coagulant polyaluminum chloride” Journal of Environmental
Sciences, 21, 18-22.
[7]Hsu, B.M. and Huang, C. P. (2001) “Influence of ionic strength and pH on hydrophobicity and zeta potential of Giardia and Cryptosporidium” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 201, 201-206.
[8]Hu, C., Liu, H. and Qu, J. (2005) “Preparation and characterization of polyaluminum chloride containing high content of Al13 and active chlorine ” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 260, 109-117.
[9]Hu, C., Liu, H., Qu, J., Wang, D. and Ru, J. (2006) “Coagulation Behavior of Aluminum Salts in Eutrophic Water:Significance of Al13 Species and pH Control”
Environmental Science & Technology, 40, 325-331.
[10]Kretzschmar, R., Holthoff, H. and Sticher, H. (1998) “Influence of pH and Humic Acid on Coagulation Kinetics of Kaolinite: A Dynamic Light Scattering Study”Journal of Colloid and Interface Science, 202, 95-103
[11]Lee, S.J., Lee, Y.J. and Nam, S.H. (2008) “Improvement in the coagulation performance by combining Al and Fe coagulants in water purification” Korean Journal of
Chemical Engineering, 25(3), 505-512
[12]Lin, J.R., Chin, C. J., Huang, C. P., Pan, J. R. and Wang, D. (2008) “Coagulation behavior of Al13 aggregates” Water Research, 42, 4281-4290.
[13]Lin, J. R., Huang, C. P., Pan, J. R. and Wang, D. (2008) “Effect of Al(III) speciation on coagulation of highly turbid water” Chemosphere, 72, 189-196.
[14]Morfesis, A., Jacobson, A. M., Frollini, R., Helgeson, M., Billica, J. and Gertig, K. R.
(2009) “Role of Zeta (ζ) Potential in the Optimization of Water Treatment Facility Operations” Industrial& Engineering Chemistry Research, 48, 2305-2308.
[15]Sansalone, J.J. and Kim, J.Y. (2008) “Zeta potential of clay-size particles in urban rainfall–runoff during hydrologic transport” Journal of Hydrology, 356, 163-173.
[16]Sansalone, J.J. and Kim, J.Y. (2008) “Suspended particle destabilization in retained urban stormwater as a function of coagulant dosage and redox conditions” Water
Research, 42, 909-922.
[17]Wang, D., Sun W., Xu.Y., Tang, H. and Gregory, J. (2004)“Speciation stability of inorganic polymer flocculant-PACl” Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 243, 1-10.
[18]Wang, D. and Tang, H. (2006)“Quantitative model of coagulation with inorganic polymer flocculant PACI : Application of the PCNM”. Journal of Environmental
Engineering., 132, 434-441.
[19]Wu, X., Ge, X., Wang, D. and Tang, H. (2007) “Coagulation of silica microspheres with hydrolyzed Al(III)-Significance of Al13 and Al13 aggregates” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330, 72-79.
[20]Wu, X., Wang, D., Ge, X. and Tang, H. (2008) “Distinct coagulation mechanism and model between alum and high Al13-PACl” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305, 89-96.
[21]Wu, X., Ge, X., Wang, D. and Tang, H. (2009) “Distinct mechanisms of particle aggregation induced by alum and PACl: Floc structure and DLVO evaluation”Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 56-63.
[22]Xiao, F., Ma, J., Yi, P. and Huang, H. J. C. (2008) “Effects of low temperature on coagulation of kaolinite suspensions” Water Research, 42, 2983-2992.
[23]Xiao, F., Zhang, X. and Lee, C. (2008) “Is electrophoretic mobility determination meaningful for aluminum(III) coagulation of kaolinite suspension?”Journal of Colloid and Interface Science, 327, 348-353.
[24]Ye, C., Wang, D., Shi, B., Yu, J., Qu, J., Edwards, M. and Tang, H. (2007)“Alkalinity effect of coagulation with polyaluminum chlorides:Role of electrostatic
patch ” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 163-173.
[25]Yan, M., Wang, D., Qu, J., He, W. and Chow, C. (2007) “Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum
chloride: A case study with the typical micro-polluted source waters” Journal of Colloid and Interface Science, 316, 482-489.
[26]Yan, M., Wang, D., Yu, J., Ni, J., Edwards, M. and Qu, J. (2008) “Enhanced coagulation with polyaluminum chlorides:Role of pH/Alkalinity and speciation”Chemosphere, 71, 1665-1673.
[27]李坤峰 (2000) “飲用水處理程序二階段添加PAC與污泥毯穩定度提昇之研究”,元智大學化學工程研究所碩士論文。
[28]李文善 (2007) “預先混凝處理之截留式微過濾薄膜回收淨水場砂濾反洗水之研究:膠羽特性影響”,國立交通大學環境工程研究所碩士論文。
[29]林志麟 (2008) “聚氯化鋁水解物種之混凝行為:膠體去穩定機制及膠羽形成分析”,國立交通大學環境工程研究所博士論文。
[30]陳俞蓁 (2002) “混凝對表面水濁度去除之研究”,國立成功大學環境工程研究所碩士論文。
[31]陳韋弘 (2005) “混凝劑Al 型態對高濁水混凝行為之影響”,國立交通大學環境工程研究所碩士論文。
[32]莊竣皓 (2007) “淡水河流域鹼度、酸鹼值與主要離子之時空變化”,國立中央大學水文科學研究所碩士論文。
[33]劉奕甫 (2007) “低濁原水處理策略評估:實驗室及現場診斷”,國立交通大學環境工程研究所碩士論文。
[34]陳曼莉 (2008) “自來水設施維護管理指南 第七篇 淨水設施”,中華民國自來水協會技術報告。
[35]黃志彬、袁如馨 (2007) “高純度Al13 混凝劑之混凝特性及製備研究”,台灣自來水公司研究報告十月。
[36]黃志彬 (2008) “水公司淨水場低濁度難處理原水處理最適化之研究”,台灣自來水公司研究報告七月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top