[1]Annadurai,G., Sung, S.S. and Lee, D.J (2004)“Simultaneous removal of turbidity and humic acid from high turbidity stormwater” Advances in Environmental Research, 8, 713-725.
[2]Chen, Z., Luan, Z., Jia, Z. and Li, X. (2009) “Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions” Journal of
Environmental Management, 90, 2831-2840.
[3]Duan, J. and Gregory, J. (2003) “Coagulation by hydrolysing metal salts” Advances in Colloid and Interface Science, 100-102, 475–502.
[4]Gao, B.Y., Yue, Q.Y., Wang, B.J. and Chu, Y.B. (2003)“Poly-aluminum-silicate-chloride (PASiC)-a new type of composite inorganic polymer coagulant” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 229, 121-127.
[5]Gao, B.Y., Chu, Y.B., Yue, Q.Y., Wang, B.J. and Wang, S.G. (2005) “Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content” Journal of Environmental Management, 76, 143-147.
[6]Gao, B., Chu, Y., Yue, Q. and Wang, Y. (2009) “Purification and characterization of Al13 species in coagulant polyaluminum chloride” Journal of Environmental
Sciences, 21, 18-22.
[7]Hsu, B.M. and Huang, C. P. (2001) “Influence of ionic strength and pH on hydrophobicity and zeta potential of Giardia and Cryptosporidium” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 201, 201-206.
[8]Hu, C., Liu, H. and Qu, J. (2005) “Preparation and characterization of polyaluminum chloride containing high content of Al13 and active chlorine ” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 260, 109-117.
[9]Hu, C., Liu, H., Qu, J., Wang, D. and Ru, J. (2006) “Coagulation Behavior of Aluminum Salts in Eutrophic Water:Significance of Al13 Species and pH Control”
Environmental Science & Technology, 40, 325-331.
[10]Kretzschmar, R., Holthoff, H. and Sticher, H. (1998) “Influence of pH and Humic Acid on Coagulation Kinetics of Kaolinite: A Dynamic Light Scattering Study”Journal of Colloid and Interface Science, 202, 95-103
[11]Lee, S.J., Lee, Y.J. and Nam, S.H. (2008) “Improvement in the coagulation performance by combining Al and Fe coagulants in water purification” Korean Journal of
Chemical Engineering, 25(3), 505-512
[12]Lin, J.R., Chin, C. J., Huang, C. P., Pan, J. R. and Wang, D. (2008) “Coagulation behavior of Al13 aggregates” Water Research, 42, 4281-4290.
[13]Lin, J. R., Huang, C. P., Pan, J. R. and Wang, D. (2008) “Effect of Al(III) speciation on coagulation of highly turbid water” Chemosphere, 72, 189-196.
[14]Morfesis, A., Jacobson, A. M., Frollini, R., Helgeson, M., Billica, J. and Gertig, K. R.
(2009) “Role of Zeta (ζ) Potential in the Optimization of Water Treatment Facility Operations” Industrial& Engineering Chemistry Research, 48, 2305-2308.
[15]Sansalone, J.J. and Kim, J.Y. (2008) “Zeta potential of clay-size particles in urban rainfall–runoff during hydrologic transport” Journal of Hydrology, 356, 163-173.
[16]Sansalone, J.J. and Kim, J.Y. (2008) “Suspended particle destabilization in retained urban stormwater as a function of coagulant dosage and redox conditions” Water
Research, 42, 909-922.
[17]Wang, D., Sun W., Xu.Y., Tang, H. and Gregory, J. (2004)“Speciation stability of inorganic polymer flocculant-PACl” Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 243, 1-10.
[18]Wang, D. and Tang, H. (2006)“Quantitative model of coagulation with inorganic polymer flocculant PACI : Application of the PCNM”. Journal of Environmental
Engineering., 132, 434-441.
[19]Wu, X., Ge, X., Wang, D. and Tang, H. (2007) “Coagulation of silica microspheres with hydrolyzed Al(III)-Significance of Al13 and Al13 aggregates” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330, 72-79.
[20]Wu, X., Wang, D., Ge, X. and Tang, H. (2008) “Distinct coagulation mechanism and model between alum and high Al13-PACl” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305, 89-96.
[21]Wu, X., Ge, X., Wang, D. and Tang, H. (2009) “Distinct mechanisms of particle aggregation induced by alum and PACl: Floc structure and DLVO evaluation”Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 56-63.
[22]Xiao, F., Ma, J., Yi, P. and Huang, H. J. C. (2008) “Effects of low temperature on coagulation of kaolinite suspensions” Water Research, 42, 2983-2992.
[23]Xiao, F., Zhang, X. and Lee, C. (2008) “Is electrophoretic mobility determination meaningful for aluminum(III) coagulation of kaolinite suspension?”Journal of Colloid and Interface Science, 327, 348-353.
[24]Ye, C., Wang, D., Shi, B., Yu, J., Qu, J., Edwards, M. and Tang, H. (2007)“Alkalinity effect of coagulation with polyaluminum chlorides:Role of electrostatic
patch ” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 163-173.
[25]Yan, M., Wang, D., Qu, J., He, W. and Chow, C. (2007) “Relative importance of hydrolyzed Al(III) species (Ala, Alb, and Alc) during coagulation with polyaluminum
chloride: A case study with the typical micro-polluted source waters” Journal of Colloid and Interface Science, 316, 482-489.
[26]Yan, M., Wang, D., Yu, J., Ni, J., Edwards, M. and Qu, J. (2008) “Enhanced coagulation with polyaluminum chlorides:Role of pH/Alkalinity and speciation”Chemosphere, 71, 1665-1673.
[27]李坤峰 (2000) “飲用水處理程序二階段添加PAC與污泥毯穩定度提昇之研究”,元智大學化學工程研究所碩士論文。
[28]李文善 (2007) “預先混凝處理之截留式微過濾薄膜回收淨水場砂濾反洗水之研究:膠羽特性影響”,國立交通大學環境工程研究所碩士論文。
[29]林志麟 (2008) “聚氯化鋁水解物種之混凝行為:膠體去穩定機制及膠羽形成分析”,國立交通大學環境工程研究所博士論文。
[30]陳俞蓁 (2002) “混凝對表面水濁度去除之研究”,國立成功大學環境工程研究所碩士論文。[31]陳韋弘 (2005) “混凝劑Al 型態對高濁水混凝行為之影響”,國立交通大學環境工程研究所碩士論文。[32]莊竣皓 (2007) “淡水河流域鹼度、酸鹼值與主要離子之時空變化”,國立中央大學水文科學研究所碩士論文。[33]劉奕甫 (2007) “低濁原水處理策略評估:實驗室及現場診斷”,國立交通大學環境工程研究所碩士論文。
[34]陳曼莉 (2008) “自來水設施維護管理指南 第七篇 淨水設施”,中華民國自來水協會技術報告。
[35]黃志彬、袁如馨 (2007) “高純度Al13 混凝劑之混凝特性及製備研究”,台灣自來水公司研究報告十月。[36]黃志彬 (2008) “水公司淨水場低濁度難處理原水處理最適化之研究”,台灣自來水公司研究報告七月。