跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪紹航
研究生(外文):Shao-Hang Hung
論文名稱:具高動態範圍及溫度補償增益之車用CMOS影像感測器
論文名稱(外文):Wide Dynamic Range & Temperature Compensated Gain CMOS Image Sensor in Automotive Applications
指導教授:林進燈林進燈引用關係
指導教授(外文):Chin-Teng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機學院IC設計產業專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:93
中文關鍵詞:CMOS影像感測器車用電子溫度補償高動態範圍
外文關鍵詞:CMOS Image SensorAutomotive ElectronicsTemperature CompensatedHigh Dynamic Range
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1209
  • 評分評分:
  • 下載下載:210
  • 收藏至我的研究室書目清單書目收藏:3
影像感測器被廣泛的使用在日常生活中,其全面電子化的趨勢在近五年以內迅速地吞沒了原本屬於銀鹽底片以及傳統相機的世代。無論是以CCD製程抑或是CMOS製程所製作的產品,或是應用在數位相機、數位攝影機上,影像感測器必須要克服除了原本攝影上所遇到的問題,如高對比亮度限制、手震問題之外,亦要克服許多因為電子元件特性而導致畫質不良的因素,如強烈溫度變化對畫質之影響、定格雜訊等,均是被積極重視及研究的重要課題。基於上述問題,我們所改良開發的特殊應用影像感測器,則定位成須在亮度、溫度變化強烈的環境之下,亦又能維持一定程度的畫質,以提供清晰的影像給演算法做正確判斷,如車用電子之應用。本論文針對目前全球熱門的車用電子領域,考量車用影像感測器所必須面臨的高對比亮度、高溫度變化之惡劣室外環境,設計一個具有高動態範圍操作模式,且具有溫度補償增益之影像感測器。此晶片採用台積電(Taiwan Semiconductor Manufacturing Company, TSMC)0.35um 2P4M Mix-Signal CMOS標準製程,並同時使用該公司提供之cell base library進行數位部份之電路合成;感光陣列為256像素(16×16),可視動態範圍為80dB,溫度補償之放大器增益為12 dB,操作頻率符合VGA解析度且維持30 frames/sec速度,供應電壓3.3V,內建1V帶差參考電路(Bandgap References),不含類比-數位轉換器(ADC),總功率消耗167.7uW,晶片面積2.826 x 2.826 mm²。
Image Sensor has been popularly used in our daily life. Whether digital camera or digital video camera in CCD or CMOS process implementation, the tendency toward fully electronic-image equipment engulf the old generation of silver film. Thus the original photography problems like limited of high contrast, vibration issue, there would be the other problems due to electronic devices` characteristic, such as thermal noise can strongly affect the quality of picture. These problems are still hot topics to be overcome, and lots of specialized image sensors have been implemented for different application. This paper thesis on automotive application, presented a high dynamic range and temperature compensated gain CMOS image sensor fabricated by Taiwan Semiconductor Manufacturing Company(TSMC)with 0.35um 2P4M Mix-Signal Standard CMOS process technology and it’s cell base library. The chip has 256 pixels(16×16)sensor array, dynamic range extended as 80dB. The gain of temperature compensated differential difference amplifier is 12 dB. The chip operates at VGA resolution of 30 frames/sec. It also built in 1V bandgap reference circuit with 3.3V Supply voltage. Without Analog to Digital Converter (ADC), the total power consumption is 167.7uW, and area spent 2.826 x 2.826 mm².
Contents
Contents v
Content of Picture vii
Content of Table xii
Chapter 1 Introduction 1
1.1 Brief Introduction 1
1.2 Organization of the Thesis 4
Chapter 2 History of Image Sensor & others research 5
2.1 Photoelectric effect 5
2.1.1 Light versus Electromagnetic Waves 7
2.1.2 Theorem of Photoelectric Effect 11
2.2 Photo Detector 14
2.1.1 Photodiodes 16
2.1.2 Phototransistors 20
2.3 CCD & CMOS 23
2.4 Wide Dynamic Range research 27
2.4.1 Dual Sampling [25] 28
2.4.2 Logarithm Conversion [26] 29
2.4.3 Capacitance Modulation Conversion [21][27] 30
2.4.4 Pixel Level ADC with Multi-Sampling [22][28] 31
2.4.5 Pixel Level Analog Processing [8][29][30][31][32][33] 32
2.5 Differential Difference Amplifier(DDA)[9][34] 34
2.6 Temperature Compensated Circuit [10] 36
2.7 Bandgap Circuit 【3】【13】 39
Chapter 3 Wide Dynamic Range & Temperature Compensated Gain CMOS Image Sensor in Automotive Application 43
3.1 System Architecture 43
3.2 Circuit Design 44
3.2.1 Analog Memory in Active Pixel Sensor (AMAPS) 44
3.2.2 Correlated Double Sampling Circuit 51
3.2.3 Temperature Compensated Differential Difference Amplifier(TCDDA) 51
3.2.4 Bandgap Reference 55
3.2.5 Large Analog System Bias Circuit【3】 58
3.2.6 Timing Generator 59
Chapter 4 Implementation, Test Platform & Result 61
4.1 Chip Design Flow & Implementation 61
4.2 Chip Layout 62
4.3 Test Platform Design 68
4.4 Result 71
Chapter 5 Conclusion 74
5.1 Conclusion 74
5.2 Future Work 74
References 76
Appendix 80
A. Design Rule Check 80
B. Layout Versus Schematic check 83
C. Pins Instructions & SPEC Table 84
D. CIC Tapeout Review Form 85
E. CIC Tapeout Question & Reply 89
F. Opinions from the Committee of Oral Exam 94
Papers
[1] E. R. Fossum, “Active Pixel Sensors: Are CCD’s Dinosaurs?”, in Proc. SPIE, Vol.1900, pp.2~14, 1993.
[2] M. Loinaz, et al., “A 200mW 3.3V CMOS Color Camera IC Producting 352x288 24b Video at 30 Frames/s”, in ISSCC Dig. Tech. Papers, pp.168~169, 1998.
[3] T. Sugiyama, et al., “A 1/4-inch QVGA Color Imaging and 3-D Sensing CMOS Sensor with Analog Frame Memory”, in ISSCC Dig. Tech. Papers, pp.434~435, 2002.
[4] S. Kawahito, et al., “A Compressed Digital Output CMOS Image Sensor with Analog 2-D DCT Processors and ADC/Qualtizer”, in ISSCC Dig. Tech Papers, pp.184~185, 1997.
[5] M. Schanz, C. Nitta, A. Buβannm, B. J. Hosticka, R. K. Wertheimer, “A High-Dynamic-Range CMOS Image Sensor for Automotive Applications”, in IEEE JSSC,Vol. 35,NO.7, pp.932~938, July 2000.
[6] B. J. Hosticka, W. Brockherde, A. Buβannm, T. Heimann, R. Jeremias, A. Kemna, C. Nitta, O. Schrey, “CMOS Imaging for Automotive Applications”, in IEEE Trans. Electron Devices, Vol. 50, No.1, pp.173~183, January 2003.
[7] N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W. E. Verburgt, A. J. Mierop, W. Hoekstra, E. Roks, A. J. P. Theuwissen, “Leakage Current Modeling of Test Structures for Characterization of Dark Current in CMOS Image Sensors”, in IEEE Trans. Electron Devices, Vol. 50, No.1, pp.77~83, January 2003.
[8] Y. Muramatsu, S. Kurosawa, M. Furumiya, H. Ohkubo, Y. Nakashiba., “A Signal-Processing CMOS Image Sensor using a Simple Analog Operation”, in IEEE JSSC, Vol. 38, No. 1, pp.101~106, January 2003.
[9] H. Alzaher, M. Ismail, “A CMOS Fully Balanced Differential Difference Amplifier and Its Applications”, in IEEE Trans. C.A.S.-II:Analog and Digital Signal Processing, Vol. 48,No. 6, pp.614~620 , June 2001.
[10] J. A. S. Dias, W. B. de Moraes, “CMOS Temperature- Stable Liberalized Differential Pair”, in ELECTRONICS LETTERS, Vol.28 No.25, pp.2350~2351 3rd December 1992.
[11] K. N. Leung, P. K. T. Mok, ”A Sub-1-V 15-ppm/°C CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device”, in IEEE JSSC, Vol 37, No.4, pp., pp.526~530, April 2002.
[12] S. G. Chamberlain, “Photosensitivity and Scanning of Silicon Image Detector Arrays”, in IEEE JSSC, Vol. SC-4, pp.333~342, 1969.
[13] T. Delbrück, “Investigations of Visual Transduction and Motion Processing”, Ph.D. thesis, California Institute of Technology, 1993.
[14] E-S. Eid, A.G. Dickinson, D.A. Inglis, B. D. Ackland and E. R. Fossum, “CMOS Active Pixel Image Sensor for Low Cost Applications”, in International Conference on Electronics, Circuits and Systems, pp.S39~S46, 1994.
[15] S. Mendis, S. E. Kemeny and E. R. Fossum, “CMOS Active Pixel Image Sensor”, in IEEE Trans. Electron Devices, Vol. ED-41, pp.452~453, 1994.
[16] S. Mendis, S. E. Kemeny , R. C. Gee, B. Pain, C.O. Staller, Q. Kim and E. R. Fossum, “Progress in CMOS Active Pixel Image Sensor”, in SPIE, Vol.2172, pp.19~29,1994.
[17] G. Soncini, M. Zen, M. Rudan and G. Verzellesi, “On the Electro-optical Characteristics of CMOS Compatible Photodiodes”, in Mediterranean Electro-technical Conference, pp.111~113, May 1991.
[18] Abbas El Gamal, Helmy Eltoukhy, “CMOS Image Sensors”, in IEEE Circuits and Devices Magazine, pp. 6-20 May/ June 2005
[19] W. S. Boyle and G. E. Smith, “Charge Coupled Semiconductor Devices”, in Bell Syst. Tech. J., pp.587~593, Apr. 1970.
[20] Kazuya Yonemoto, Hirofumi Sumi, “A Numerical Analysis of a CMOS Image Sensor With a Simple Fixed-Pattern-Noise-Reduction Technology”, in IEEE Trans. Electron Devices, Volume 49, Issue 5, pp.746~753, May 2002
[21] S. J. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini, “A 256 × 256 CMOS imaging array with wide dynamic range pixels and column parallel digital output,” in IEEE JSSC, vol. 33, pp. 2081~2091, Dec. 1998.
[22] D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640X512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC,” in IEEE JSSC, vol.34, pp. 1821~1834, Dec. 1999.
[23] D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “A 138-dB dynamic range CMOS image sensor with new pixel architecture,” in ISSCC Tech. Dig., Vol. 45, pp. 40~41, 2002.
[24] L. McIlrath, “A low-power low-noise ultrawide-dynamic-range CMOS imager with pixel-parallel A/D conversion,” in IEEE JSSC, Vol. 36, pp.846~853, May 2001.
[25] O. Y. Petch., E. R. Fossum, “Wide Interscene Dynamic Range SMOS APS Using Dual Sampling,” in IEEE Trans. Electron Devices, Vol.44, No.10, pp. 1721~1723,1997.
[26] 萩原義雄,ほか,”対数変換形CMOSえエリア固体撮像素子,“映像情報メデイア學会誌, Vol.54, No.2, pp.224~228, 2000.
[27] S. J. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini, “A 256 × 256 CMOS imaging array with wide dynamic range pixels and column parallel digital output,” in ISSCC, Dig. Tech. Papers, pp.176~177, 1998.
[28] D. Yang, B. Fowler, and A. El Gamal, ”A Nyquist-Rate Pixel Levewl ADC for CMOS Image Sensors,” in IEEE JSSC, Vol. 34 No.3, pp.348~356, 1999.
[29] G. Chapinal, S. A. Bota, M. Moreno, J. Palacìn, A. Herms, “A 128×128 CMOS Image Sensor With Analog Memory for Synchronous Image Capture,” in IEEE Sensors Journal, Vol. 2, No.2, pp. 120~127, April 2002.
[30] M. Furumiya, H. Ohkubo, Y. Nakashiba, ”A Signal-Processing CMOS Image Sensor Using a Simple Analog Operation,” in IEEE JSSC, Vol. 38, No.1, January 2003.
[31] S. Sugawa, N. Akahane, S. Adachi, K. Mori, T. Ishichi, K. Mizobuchi, “A 100dB Dynamic Range CMOS Image Sensor Using a Lateral Overflow Integration Capacitor,” in IEEE ISSCC, Dig. Tech. Papers, 19.4, pp.601~603, February 2005.
[32] N. Akahane, S. Sugawa, S. Adaci, K. Mori, T. Ishiyuki, K. Mizobuchi, “A Sensitivity and Linearity Improvement of a 100 dB Dynamic Range CMOS Image Sensor Using a Lateral Overflow Integration Capacitor”, in VLSI Circuits, Digest of Technical Papers , pp.62~65, June 2005.
[33] N. Akahane, S. Sugawa, S. Adaci, K. Mori, T. Ishiyuki, K. Mizobuchi, “A sensitivity and linearity improvement of a 100-dB dynamic range CMOS image sensor using a lateral overflow integration capacitor”, in IEEE JSSC, Vol. 41, Issue 4, pp.851~858, April 2006.
[34] S. C. Huang, M. Ismail, S. R. Zarabadi, “A Wide Range Differential Difference Amplifier: A Basic Block for Analog Signal Processing in MOS Technology”, in IEEE Trans. C.A.S.-II:Analog and Digital Signal Processing, Vol. 40, No.5, pp. 289~301, May 1993.
[35] D. Hilbiber, “A New Semiconductor Voltage Standard,” IEEE ISSCC Dig. Of Tech. Papers, pp. 32~33, Feb, 1964.
[36] Y. Değerli, F. Lavernhe, P. Magnan, J. A. Farré,” Analysis and Reduction of Signal Readout Circuitry Temporal Noise in CMOS Image Sensors for Low-Light Levels”, IEEE Trans. On Electron Devices, Vol. 47, No.5, pp. 949~962, May 2000.
[37] 吳俊鵬、宋開泰,”整合動態物體偵測電路之CMOS影像感測晶片研發:Development of a CMOS Image Sensor with On-Chip Movement Detection Circuits”,碩士論文,國立交通大學電機與控制學系,中華民國九十年六月
[38] 林哲毅、金雅琴,”具高動態範圍之4T主動式影像感測器元件及操作方式: A Four Transistor CMOS Active Pixel Sensor with High Dynamic Range Operation”,碩士論文,國立清華大學電子工程研究所,中華民國九十三年六月

Website
< 1 > Arena Nikkeibp Report , http://arena.nikkeibp.co.jp/news/20060606/117021/
< 2 > Physics Demo Lab in National Taiwan Normal University,
http://www.phy.ntnu.edu.tw/demolab/txt/light6.htm
< 3 > Molecular Nano-Optics and Spins’ Lab in Leiden University, Netherlands,
http://www.monos.leidenuniv.nl/smo/index.html?basics/light.htm
< 4 > Dipol Website, http://www.dipol.com.pl/images/a143.jpg
< 5 > DHD Multimedia Gallery, http://gallery.hd.org/_c/natural-science/prism-and-refraction-of-light-into-rainbow-2-AJHD.jpg.html
< 6 > ColorXrays Photo Gallery, http://colorxrays.com/gallerymedical.htm
< 7 > Michael Fowler ,” The Photoelectric Effect “, Physics course in University of Virginia, http://galileo.phys.virginia.edu/classes/252/photoelectric_effect.html
< 8 > Mr. OH, “Sensor Devices: CCD & CMOS”, Mr. OH Digital Course Chap. 2 http://www.digital.idv.tw/digital/Classroom/MROH-CLASS/oh2/index-oh2.htm
< 9 > MAYO Clinic Inc., “Capsule Endoscopy”, MAYO Clinic Medical Services http://www.mayoclinic.org/crohns/capsuleendo.html
< 10 > Motic Inc., “MLC-150C Datasheet”,http://www.motic.com
< 11 > PixArt Imaging Inc., “PAC7312PE Datasheet”, http://www.pixart.com.tw/ch/productsditel.asp

Books
【1】 米本和也 原著;陳榕庭、彭美桂 翻譯,”CCD/CMOS 影像感測器之基礎與應用”,全華科技圖書股份有限公司,2005年初版。
【2】 Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design”, second edition, Oxford University Press, Inc, 2002.
【3】 Behzad Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw-Hill Companies, Inc. 2004.
【4】 Tamás Roska, Ángel Rodríguez – Vázquez, “Towards the Visual Microprocessor – VLSI Design and the Use of Cellular Neural Network Universal Machines”, John Wiley & Sons Ltd, 2001.
【5】 Jerald G. Graeme,” Photodiode Amplifiers: OP AMP Solutions”, McGraw –Hill Companies, Inc. 1995.
【6】 Paul R, Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, ”Analysis and Design of Analog Integrated Circuits”, fourth edition, John Wiley & Sons, Inc., 2001.
【7】 Kiyoharu Aizawa, Katsuhiko Sakaue, Yasuhito Suenaga, ”Image Processing Technologies: Algorithms, Sensors, and Applications”, Marcel Dekker, Inc.,2004
【8】 R. Jacob Baker, “CMOS Circuit Design, Layout, and Simulation”, second edition, John Wiley & Sons, Inc.,2005
【9】 R. Jacob Baker, “CMOS Mixed-Signal Circuit Design : Volume II of CMOS Circuit Design, Layout, and Simulation”, John Wiley & Sons, Inc.,2002
【10】 S. M. Sze, “Physics of Semiconductor Devices”, second edition, John Wiley & Sons, Inc.,1981
【11】 R. S. Muller and T. I. Kamins, “Device Electronics for Integrated Circuits”, second edition, John Wiley & Sons, Inc., New York, 1986
【12】 Silvano Donati, ”Photodetectors : Devices, Circuits, and Applications”, Prentice Hall, Inc. 2000.
【13】 G. A. Rincón-Mora , “Analog Integrated Circuit Handout”
【14】 張文旭,彭罡咛,吳建福,”Full-Custom IC Design Concepts(for WS):Training Manual”,國研院國家晶片系統設計中心,2005-July
【15】 張年翔,”Cell-Based IC Physical Design and Verification with SOC Encounter :Training Manual”,國研院國家晶片系統設計中心,2005-July
【16】 許志賢,”Full-Custom Layout Editor with Laker :Training Manual”,國研院國家晶片系統設計中心,2005-July
【17】 許志賢,”Mixed-Signal IC Design Kit :Training Manual”,國研院國家晶片系統設計中心,2005-July
【18】 Taiwan Semiconductor Manufacturing Company(TSMC) Ltd, “TSMC CMOS Image Sensor Technology”, introduction document, 2005
【19】 Micron Ltd, “Micron MT9V022 Automotive CMOS Image Sensor Datasheet “, datasheet document, 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊