跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 05:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宗億
研究生(外文):Zong-Yi Guo
論文名稱:具偏移消除之全數位CMOS時域智慧型溫度感測器之設計與實作
論文名稱(外文):Design and Realization of All-Digital CMOS Time-Domain Smart Temperature Sensor with Offset Cancellation
指導教授:陳俊吉陳俊吉引用關係
指導教授(外文):Chun-Chi Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:時域型時間至數位轉換器互補式金屬氧化物半導體脈衝縮減全數位溫度感測器
外文關鍵詞:CMOSAll digitalOne delay lineTemperature sensorTime-domain
相關次數:
  • 被引用被引用:4
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文設計一個具偏移消除之全數位CMOS時域智慧型溫度感測電路(Time-Domain Smart Temperature Sensor, TDSTS)以改善精確度,並簡化電路架構來達到低成本之目標。本電路使用簡單之反相器來串接以實現出溫度感測延遲線(Temperature-Sensing Delay Line)用來執行溫度至時間轉換,接著利用所提出之新穎全數位脈衝縮減機制(All-Digital Pulse-Shrinking Unit, ADPSU)來做時間至數位轉換,此機制之實現促使此TDSTS可以全數位電路實現;此外,此縮減機制與路徑選擇電路(Function Selection Circuit)結合以簡化電路架構,路徑選擇電路可使溫度感測電路與時間量測電路之延遲線重複使用,不僅減少電路面積,更能降低電路功率消耗。最後,本論文採用偏移消除電路(Offset Cancellation Circuit)來扣除不必要之數位值以降低計數器使用位元數以及去除因脈衝縮減而造成的溫度誤差進而提升其精確度。本研發電路是以TSMC 0.35-μm 2P4M製程製作,電路佈局面積為 0.027 mm2,溫度範圍為0 oC ~ 100 oC且解析度為0.1 oC,模擬結果顯示溫度誤差由未偏移消除的-2.4~0 oC改善至± 0.8 oC,且功率消耗在每秒1000次之取樣率下為66.8 μW,藉由偏移消除電路之提出,本溫度感測器確實改善了溫度誤差。
This study presents a CMOS (Complementary Metal-Oxide Semiconductor) time-domain smart temperature sensor (TDSTS) with offset cancellation for accuracy improvement, structure simplification, and cost saving. This study used NOT gates in series to realize a temperature-sensing delay line (TDDL) to perform the temperature-to-time conversion first. Then, an all-digital pulse-shrinking unit (ADPSU) was proposed to convert the time into the corresponding digital output. This enabled the proposed sensor can be implemented using all-digital design. Additionally, this unit combined with the function selection unit (FSU) innovatively to simplify the structure. The FSU assisted the delay line to sense the temperature and measure the time both. It not only reduces the circuit area but also reduce the power consumption. Finally, this study adopted an offset cancellation circuit (OCC) to deduct unnecessary digital value for reducing the bits of counter and to eliminate the error caused by the pulse shrinking. The circuit area is 0.027 mm2 in a TSMC 0.35-μm CMOS process. The simulated resolution is 0.1 oC and the inaccuracy is improved form -2.4~0 oC of un-cancelled version to ±0.8 oC in the temperature range of 0 oC ~ 100 oC. The power consumption is 66.8 μW in the 1k/s sampling rate. With the OCC, the sensor substantially improves the temperature accuracy.
摘要---------------------------------------------------------------------------------------------------I
Abstract----------------------------------------------------------------------------------------------II
誌謝-------------------------------------------------------------------------------------------------III
目錄--------------------------------------------------------------------------------------------------IV
表目錄--------------------------------------------------------------------------------------------VI
圖目錄----------------------------------------------------------------------------------------------VII
一、 緒論-----------------------------------------------------------------------------------------1
1.1 研究動機------------------------------------------------------------------------------1
1.2 論文架構------------------------------------------------------------------------------5
二、 溫度感測器--------------------------------------------------------------------------------6
2.1 溫度感測器的種類------------------------------------------------------------------6
2.1.1 電阻式溫度感測器-------------------------------------------------------7
2.1.2 電熱耦式溫度感測器----------------------------------------------------7
2.1.3 熱敏電阻式溫度感測器-------------------------------------------------7
2.1.4 互補式金氧半溫度感測器----------------------------------------------8
2.1.5溫度感測器總結-----------------------------------------------------------8
2.2溫度感測器參數介紹----------------------------------------------------------------8
2.2.1 溫度範圍-------------------------------------------------------------------9
2.2.2 解析度----------------------------------------------------------------------9
2.2.3 精確度--------------------------------------------------------------------10
2.2.4 轉換率--------------------------------------------------------------------10
2.2.5 功率消耗-----------------------------------------------------------------10
2.2.6 成本-----------------------------------------------------------------------11
2.3互補式金氧半溫度感測器種類---------------------------------------------------11
2.3.1 互補式金氧半時域型溫度感測器-----------------------------------12
2.3.2 互補式金氧半具簡化單一延遲線時域溫度感測器--------------17
2.4 近年來溫度感測器之文獻探討--------------------------------------------------19
2.4.1 高效能之低功率消耗時域溫度感測器-----------------------------19
2.4.2 高效能之CMOS應用於SOC全數位時域溫度感測器----------21
2.4.3 電流雙斜率互補金屬氧化半導體溫度感測器--------------------23
三、 全數位CMOS時域智慧型溫度感測器----------------------------------------------26
3.1 研究動機-----------------------------------------------------------------------------26
3.2 具偏移消除之全數位CMOS時域智慧型溫度感測器----------------------27
3.2.1 簡述-----------------------------------------------------------------------27
3.2.2 路徑選擇電路-----------------------------------------------------------29
3.2.3 溫度感測至脈衝轉換階段--------------------------------------------30
3.2.4 全數位式脈衝縮減機制-----------------------------------------------34
3.2.4.1 基本脈衝縮減機制---------------------------------------34
3.2.4.2 全數位脈衝縮減機制------------------------------------36
3.2.4.3 新穎之全數位脈衝縮減單元---------------------------38
3.2.5 偏移消除電路-----------------------------------------------------------40
3.2.5.1 文獻中對於數位值扣抵之方法------------------------40
3.2.5.2 脈衝縮減機制之偏移時間------------------------------42
3.2.5.3 論文使用偏移消除電路架構---------------------------46
3.3 脈衝中和-----------------------------------------------------------------------------48
3.3.1 簡述-----------------------------------------------------------------------48
3.3.2 阻抗不匹配解決辦法之比較-----------------------------------------51
3.3.3 改善路徑選擇電路-----------------------------------------------------52
3.3.4 改善溫度感測至脈衝轉換--------------------------------------------54
3.3.5 改善額外延遲線--------------------------------------------------------55
3.3.6 脈衝中和技術之往後發展--------------------------------------------57
四、 .電路設計與模擬------------------------------------------------------------------------58
4.1 設計流程與考量--------------------------------------------------------------------58
4.2 具偏移消除之全數位CMOS時域智慧型溫度感測器----------------------61
4.2.1 溫度至脈衝轉換階段模擬--------------------------------------------61
4.2.2 時間量測轉換模擬-----------------------------------------------------62
4.2.2.1 時間量測階段模擬與驗證------------------------------62
4.2.2.2 溫度至數位值轉換模擬與驗證------------------------65
4.2.3 計數器模擬--------------------------------------------------------------67
4.2.4 偏移消除電路-----------------------------------------------------------68
4.2.4.1 時間量測階段模擬與驗證------------------------------68
4.2.4.2 溫度至數位值轉換模擬與驗證------------------------70
4.2.5 整體電路規格、模擬----------------------------------------------------73
五、 結論----------------------------------------------------------------------------------------80
5.1 結論-----------------------------------------------------------------------------------81
六、 參考文獻----------------------------------------------------------------------------------82
[1]陳瑞和, “感測器,” 全華圖書, Jan. 1993
[2]Bakker, et al., “High accuracy CMOS smart temperature sensors,” Kluwer Academic Publishers, 2000.
[3]G.C. M. Meijer, et al., “Temperature sensor and voltage reference implemented in CMOS technology,” IEEE J. Sensors, vol.1, no. 3, pp. 225-235, Oct. 2001.
[4]C. Poirier, et al., “Power and Temperature control on a 90nm Itanium Family Processor” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–237 Jan. 2006.
[5]M. Sasaki, et al., “A Temperature Sensor With an Inaccuracy of -1/+0.8°C Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuits,” IEEE Transaction on Semiconductor Manufacturing, vol. 21, no. 2, May. 2008.
[6]J. Yin, et al., “A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor,” IEEE ISSCC Dig., pp. 308-309, Feb. 2010.
[7]Databeans, “2010 Temperature Sensors,” http://www.databeans.com
[8]財團法人國家實驗研究院國家晶片系統設計中心, “對外服務收費方式與說明” https://www.cic.org.tw/soc/pdf/service_free.pdf
[9]P. Chen, et al., “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-8, Aug. 2005.
[10]Y. J. An, et al., “An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management,” IEEE J. Sensors, vol. 14, no. 1, Jan. 2014.
[11]Y. J. An, et al., “An Energy-Efficient All-Digital Time-Domain- Based CMOS Temperature Sensor for SoC Thermal Management,” IEEE Transaction on VLSI,, vol. 23, no. 8, Aug. 2015.
[12]C. C. Hung, et al., “A Current-Mode Dual-Slope CMOS Temperature Sensor” IEEE J. Sensors, vol. 16, no. 7, Apr. 2016.
[13]M. A. Pertijs et al., “A High-Accuracy Temperature Sensor with Second-Order Curvature Correction and Digital Bus Interface,” IEEE International Symposium on Circuits and Systems, pp. 368–371, May. 2001.
[14]P. Chen et al., “A Time-Domain Mixed-Mode Temperature Sensor with Digital Set-Point Programming,” in Proc. IEEE CICC, pp. 821-824, Sept. 2006.
[15]C. -C .Chen et al., “An Area-Efficient CMOS Time-to-Digital Converter Based on Pulse-Shrinking Scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 3, pp. 163–167, March. 2014.
[16]C. -C .Chen et al., “CMOS Time-to-Digital Converter Based on a Pulse-Mixing Scheme,” American Institute of Physics, Review of Scientific Instruments, vol. 85, no. 11, pp. 114702(1-9), Nov. 2014.
[17]R. Szplet et al., “An FPGA-Integrated Time-to-Digital Converter Base on Twp –Stage Pulse Shrinking, ” IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 6 , Jun.2010
[18]C.-C. Chen et al., “A Low-Cost CMOS Smart Temperature Sensor Using a Thermal-Sensing and Pulse-Shrinking Delay Line” IEEE J. Sensors, vol. 14, no. 1, Jun. 2014.
[19]P. Chen et al., “A Fully Digital Time Domain Smart Temperature Sensor Realized with 140 FPGA Logic Elements”, IEEE Transactions on Circuits and Systems I, vol. 54, pp. 2661-2668, Dec. 2007.
[20]P. Chen et al., “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, Mar. 2010.
[21]P. Chen et al., “A CMOS Pulse-Shrinking Delay Element For Time Interval Measurement,” IEEE Trans. Circuits Syst. II, vol. 47, no. 9, pp. 954 - 958, Sep. 2000.
[22]P. Chen et al., “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007.
[23]劉耿志,“基於脈衝縮減與脈衝擴增之高解析度互補式金氧半時間至數位轉換器” 國立高雄第一科技大學電機資訊學院.碩士論文,Jun. 2013.”
[24]陳俊吉、陳皓文、陳冠宏,“互補型金氧半之脈衝混合方法及其裝置”,中華民國專利,專利編號:I539752。.
[25]P. Chen et al., “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-8, Aug. 2005.
[26]A. L. Aita et al., “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 342-343, Feb. 2009.
[27]K. C. Liu, “A High-Resolution CMOS Time-to-Digital Converter Based on Pulse Shrinking and Pulse Stretching,” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2013.
[28]H.-W. Chen, “Design and Realization of Low Cost CMOS Smart Temperature Sensors.” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2014.
[29]F. Sebastiano et al., “A 1.2 V 10 ?巰 NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of ?b0.2 ?aC (3?? from -70 C to 125 C,” IEEE ISSCC Dig., Feb. 2010, pp. 312–313.
[30]K. Sour et al., “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ?b0.25 ?aC (3?? from 40 to 125 ?aC” IEEE ISSCC Dig., Feb. 2010, pp. 310–311.
[31]P. Chen et al., “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007.
[32]Y.-S. Lin et al., “An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications,” IEEE CICC Dig., Sep. 2008, pp. 507–510.
[33]M.-K. Law et al., “A 405-nW CMOS temperature sensor based on linear MOS operation,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
[34]M.-K. Law et al., “A Sub-?巰 Embedded CMOS Temperature Sensor for RFID Food Monitoring Application,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1246–1255, Jun. 2010.
[35]C.-C. Chung et al., “An Auto calibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring,” IEEE Trans. Circuits Syst. II, vol. 58, no. 2, pp. 105–109, Feb. 2011.
[36]K. Woo et al., “Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring,” IEEE Transaction on VLSI, vol. 20, no. 9, pp. 1590–1601, Sept. 2012.
[37]K. Kim et al., “366-Ks/s 1.09-nJ 0.0013-mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing multiphase clock,” IEEE Transaction on VLSI, vol. 20, no. 12, pp. 1–5, Dec. 2012.
[38]N. T. Trung et al., “A Delay Line with Highly Linear Thermal Sensitivity for Smart Temperature Sensor,” in Proc. 50th MWSCAS, pp. 899-902, Aug. 2007.
[39]K. Kim et al., “A 366kS/s 400uW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” in Proc. Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
[40]C. K. Kim et al., “CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008.
[41]K. Sour et al., “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ?b0.25 ?aC (3?? from 40 to 125 ?aC,” IEEE ISSCC Dig., Feb. 2010.
[42]A. L. Aita et al., “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 342-343, Feb. 2009.
[43]C. -C .Chen et al., “All-Digital Pulse-Shrinking Time-to-Digital Converter with Improved Dynamic Range,” Rev. Sci. Instrum. 87, 046104 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊