跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲豪
研究生(外文):Zhe-Hao Zhang
論文名稱:廣義彼得森圖的(2,1)-全標號
論文名稱(外文):On (2,1)-total labelings of generalized Petersen graphs
指導教授:史青林
指導教授(外文):Chin-Lin Shiue
學位類別:碩士
校院名稱:中原大學
系所名稱:應用數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:26
中文關鍵詞:全標號
外文關鍵詞:total labeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
 (p,1)-全標號是從圖中的點集合與邊集合到一個整數集合的映射,使得任兩個相鄰的點標不同的整數,任兩個相鄰的邊標不同的整數,且每一個邊與相連接的點的標號差的絕對值大於等於 p。一個(p,1)-全標號的跨度為任兩標號間的最大差。而一個圖G的所有(p,1)-全標號中的最小跨度稱為(p,1)-全標號數,寫成λ_P^T (G)。

  令n和k為正整數,一個圖若包含點集合{u_1,…,u_n }∪{v_1,…,v_n}以及邊集合{u_i u_(i+1)|i=1,2,…,n}∪{u_i v_i |i=1,2,…,n}∪{v_i v_(i+k)|i=1,2,…,n;k<n},其中下標加法以n為模(modulo),則稱為廣義彼德森圖,並寫成P(n,k)。

  本論文主要探討廣義彼德森圖的(2,1)-全標號並證明了下列兩個結果。

  (1)對所有正整數n和k,1≤k<n,如果n是11的倍數,且k不是11的倍數,則λ_2^T (P(n,k) )=5。

  (2)對所有大於2的正整數n,則λ_2^T (P(n,2) )=5。
A (p,1)-total labeling of a graph G is to be an assignment of V(G)∪E(G) to integers such that any two adjacent vertices of G receive distinct integers, any two adjacent edges of G receive distinct integers and a vertex and its incident edge receive integers that differ by at least p in absolute value. The span of a (p,1)- total labeling of a graph G is the maximum difference between two labels. The minimum span of a (p,1)-total labeling of G is called the (p,1)-total number of G and denoted by λ_P^T (G).
Let n and k be two positive integers. The graph with vertex set {u_1,…,u_n }∪{v_1,…,v_n } and edges set {u_i u_(i+1) |i=1,2,…,n}∪{u_i v_i |i=1,2,…,n}∪{v_i v_(i+k) ┤|i=1,2,…,n; k<n}, where addition is modulo n is called generalized
Petersen graph and denoted by P(n,k).
In this thesis, we mainly focus on the (2,1)-total labeling of the generalized Petersen graph, and we prove the following two results.
(1)For each pair of positive integers n and k, 1≤k<n, if n≡0(mod 11) and k is not divisible by 11, then λ_2^T (P(n,k) )=5.

(2)For each integer n≥2, then λ_2^T (P(n,2) )=5.
摘要 I
Abstract II
謝誌 III
Contents IV
1. Introduction 1
1.1 Motivation 1
1.2 The Preliminaries in Graph Theory 2
1.3 Known Results 4
2. Main Results 6
3. Concluding Remark 21
References 22

[1] F. Bazzaro, M. Montassier and A. Raspaud, (d,1)-Total labeling of planar graphs with large girth and high maximum degree, Discrete Math. 307, 2141-2151, 2007.

[2] G. J. Chang, W. T. Ke, D. Kuo, D. D. F. Liu and R. K. Yeh, On L(d,1)-labeling of graphs, Discrete Math. 220, 57-66, 2000.

[3] D. Chen and W. Wang, (2,1)-Total labeling of outerplanar graphs, Discrete Appl. Math. 155, 2585-2593, 2007.

[4] F. C. Chi, On (2,1)-total labeling of generalized Petersen graphs, Master’s thesis of Chung Yuan Christian University, 2011.

[5] J. R. Griggs and R. K. Yeh, Labeling graphs with a condition at distance two, SIAM J. Discrete Math. 5, 586-595, 1992.

[6] F. Havet and S. Thomass’e, Complexity of (p,1)-total labeling.

[7] F. Havet and M. L. Yu, (p,1)-Total labeling of graphs, Discrete Math. 308, 496-513, 2008.

[8] Y. C. Lin, On (2,1)-total labeling of generalized Petersen graphs, Master’s thesis of Chung Yuan Christian University, 2011.

[9] Z. H. Lin, On (2,1)-total labeling of generalized Petersen graphs, Master’s thesis of Chung Yuan Christian University, 2010.

[10] M. Montassier and A. Raspaud, (d,1)-Total labeling of graphs with a given maximum average degree, Technical Report RR-1308-03, LaBRI, 2003.

[11] D. B. West, Introduction to Graph Theory 2nd, Prentice Hall, New Jersey, 2001.

[12] M. A. Whittlesey, J. P. Georges and D. W. Mauro, On the λ-number of Q_n and related graphs SIAM J. Discrete Math. 8, 449-506, 1995.

[13] J. H. Yang, On (2,1)-total labeling of generalized Petersen graphs, Master’s thesis of Chung Yuan Christian University, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top