跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王佩琦
研究生(外文):Jocelin Muliawan
論文名稱:大岩桐兩側對稱花中受CYCLOIDEA調控之轉錄因子
論文名稱(外文):Transcriptional Factors Responsive to CYCLOIDEA in zygomorphic flower of Sinningia speciosa
指導教授:王俊能
指導教授(外文):Chun-Neng, Wang
口試委員:陳仁治王隆祺林崇熙蔡文杰
口試委員(外文):Jen-Chih, ChenLong-Chi, WangChoun-Sea, LinWen-Chieh, Tsai
口試日期:2019-06-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:119
中文關鍵詞:大岩桐兩側對稱性SsCYC5端調節區TCP結合位點下游轉錄因子背側花瓣RAD乙烯轉錄因子賀爾蒙細胞延長
DOI:10.6342/NTU201901184
相關次數:
  • 被引用被引用:1
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
兩側對稱性花被認定是被子植物演化的主要趨勢,其花從正面可畫出單一個對稱軸,將花分成兩個鏡像半部,背側,兩側和腹側花瓣沿著此對稱軸排列。兩側對稱花使傳粉者從固定的角度進入花中,以促進精確的花粉傳播和柱頭接收,從而大大提高繁殖成功率。在金魚草中,TCP轉錄因子CYCLOIDEA(CYC)在侷限在背部花瓣上表現,CYC透過調節細胞增殖和細胞延長的作用,促使背側花瓣發育,使其在外型上與兩側及腹側花瓣相異。然而,CYC啟動了那些下游基因,以及它們如何合作以產生背部辨識的花瓣形狀和大小是未知的。野生型大岩桐(Sinningia speciosa)為兩側對稱花朵,然而在人為栽培的大岩桐中,兩側對稱卻可輕易地轉換成輻射對稱,這說明了花對稱的發育模組可能是很容易改變。
為了找出CYC可能的下游基因,我們從大岩桐 ''Espirito Santo''(SsES)的轉錄組(RNA-seq)中篩選出背腹側瓣之間的差異性表達的轉錄因子(DE-TFs)。其中,篩出9個背側高表達的轉錄因子(包括SsCYC),其5端調節區(regulatory region)都有鑑定出TCP結合位點,同時也透過qRT-PCR再次驗證這9個轉錄因子確實侷限在背側花瓣表現,因此,這9個轉錄因子很有可能就是SsCYC的下游基因。為了證明SsCYC對這九個轉錄因子的調節能力,在煙草(Nicotiana benthamiana)原生質體的暫時性表達系統中,以雙熒光素酶測定檢測SsCYC和報告子(候選TF的5端調節區)之間的相互作用。結果發現,SsCYC能夠自我調節,並且活化RADIALIS-like(SsRL2)基因,該基因是金魚草中RADIALIS的直系同源基因,但其功能尚不清楚。有趣的是,SsCYC還活化乙烯反應轉錄激活因子SsERF1並抑制乙烯反應轉錄抑制因子SsERF3和ovate家族轉錄抑制因子SsOFP6,其功能目前也尚未知。
SsERF1和SsERF3的可以調控乙烯信號傳導途徑的下游基因。它們可能透過調控EXPANXIN(EXPA)基因、木葡聚醣內轉葡糖基酶/水解酶(xyloglucan endotransglucosylase/hydrolase)基因和內切-1,4-β-D-葡聚醣酶(EGase)基因來使細胞壁變的鬆散,進而改變背側花瓣細胞的延長。同時,這三個基因也在大岩桐轉錄組中被鑑定為背側表達基因,這也符合我們在大岩桐中觀察到背側花瓣的細胞有較大的細胞面積,因此背側花瓣相較於腹側花瓣長度較長,這也被認為是大岩桐花發育成兩側對稱的原因之一。
Floral zygomorphy (bilateral symmetry), in which the dorsal, lateral and ventral petals are arranged along a single plane, dividing flower into two mirror-image halves, has been selected as the major trend in angiosperm evolution. Zygomorphic flowers allow the pollinators to enter the flower in fixed angle to facilitate exact pollen deposition and stigma reception, thus greatly enhance reproductive success. In Antirrhinum, TCP transcription factor, CYCLOIDEA (CYC) is strictly expressed at the dorsal petals and it can function to regulate cell proliferation and expansion for generating dorsal identity. However, what the downstream of CYC are and how they cooperate to generate the petal shape and size for the dorsal identity are largely unknown. The wild type Sinningia speciosa exhibits zygomorphic symmetry, yet reversal to actinomorphic (radial symmetry) is common, indicating that the developmental module for floral zygomorphy might be easily altered.
In order to discover CYC downstream, differentially expressed transcription factors (DE-TFs) between dorsi-ventral petals were screened from the RNA-seq data of S. speciosa ‘Espirito Santo’ (SsES). Among them, nine TFs, including SsCYC itself, have their 5’ regulatory regions been identified with TCP binding sites and their dorsal restricted expression was confirmed by qRT-PCR. To demonstrate the possible regulation of SsCYC on these TFs, dual-luciferase assay transiently expressed in protoplasts of Nicotiana benthamiana leaves was used to examine the interaction between the effector (SsCYC) and the reporter (5’ regulatory region of the candidate TFs). It was found that SsCYC was able to auto-regulate itself and also upregulate a RADIALIS-like (SsRL2) gene which is the orthologue of RADIALIS in Antirrhinum, but its function is unknown. Interestingly, SsCYC also up-regulated the ethylene response transcriptional activator, SsERF1 and down-regulated the ethylene response transcriptional repressor, SsERF3 and an ovate family transcriptional repressor, SsOFP6 whose function is unknown.
The finding of SsERF1 and SsERF3 as SsCYC responsive TFs could be linked to their function as downstream regulators of ethylene signaling pathway. They might alter dorsal cell expansion via regulation of EXPANXIN (EXPA) genes, xyloglucan endotransglucosylase/hydrolase (XTH) encoding gene and endo-1,4-β-D-glucanase (EGase) encoding gene to loosen the cell wall, since these three genes were identified as the dorsal expressed genes in the RNA-seq data of SsES. This suggestion is also reflected by the observation that the dorsal petals of SsES have larger cell area, thus are longer in length compared to the ventral petals, which is considered as one of the factors that generates floral zygomophy in this flower.
中文摘要 I
Abstract II
Table of Contents IV
List of Tables V
List of Figures VI
List of Supplementary Data VII
Abbreviation IX
Introduction 1
Materials and Methods 7
Results 24
Discussion 34
Conclusion 47
References 49
Supplementary Data 56
Atchley, WR., and Fitch, WM. (1997). A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 94(10):5172–5176.

Baxter, CE., Costa, MM., and Coen, ES. (2007). Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J 52:105-113. doi: 10.1111/j.1365-313X.2007.03222.x.

Boccacci, P., Mela, A., Pavez Mina, C., Chitarra, W., Perrone, I., Gribaudo, I., and Gambino, G. (2017). Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors. Scientific reports 7:45670. doi:10.1038/srep45670

Boyden, GS., Donoghue, MJ., and Howarth, DG. (2013). Duplications and expression of RADIALIS-like genes in Dipsacales. Int J Plant Sci 173(6):971–983. doi: 10.1093/molbev/msp051.

Brioudes, F., Joly, C., Szécsi, J., Varaud, E., Leroux, J., Bellvert, F., Bertrand, C., and Bendahmane M. (2009). Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60(6):1070-80. doi: 10.1111/j.1365-313X.2009.04023.x.

Chandler, JW. (2011). The hormonal regulation of flower development. J Plant Growth Regul 30(2):242–254. doi:10.1007/s00344-010-9180-x.

Citerne, HL., Moèller, M., and Cronk, QCB. 2000. Diversity of CYCLOIDEA-like genes in Gesneriaceae in relation to floral symmetry. Annals of Botany 86:167-176. doi: 10.1006/anbo.2000.1178.

Corley, SB., Carpenter, R., Copsey, L., and Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci USA 102(14): 5068–5073. doi: 10.1073/pnas.0501340102.

Costa, MM., Fox, S., Hanna, AI., Baxter, C., and Coen, E. (2005). Evolution of regulatory interactions controlling floral asymmetry. Development 132(22):5093-101. doi: 10.1242/dev.02085.

Cubas, P. (2004). Floral zygomorphy, the recurring evolution of a successful trait. Bioessays 26(11):1175-84. doi: 10.1002/bies.20119.

Danisman S. (2016). TCP transcription factors at the interface between environmental challenges and the plant''s growth responses. Frontiers in plant science 7:1930. doi:10.3389/fpls.2016.01930.

de Meaux, J., Goebel U., Pop, A., and Mitchell-Olds, T. (2005). Allele-specific assay reveals functional variation in the Chalcone Synthase promoter of Arabidopsis thaliana that is compatible with neutral evolution. Plant Cell 17(3): 676–690. doi: 10.1105/tpc.104.027839.

Dong, Y., Liu, J., Li, PW., Li, CQ., Lü, TF., Yang, X., and Wang, YZ. (2018). Evolution of Darwin’s Peloric Gloxinia (Sinningia speciosa) is caused by a null mutation in a pleiotropic TCP Gene. Mol Biol Evol 35(8):1901-1915. doi: 10.1093/molbev/msy090.

Dubois, M., Van den Broeck, L., and Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in plant science 23(4):311–323. doi:10.1016/j.tplants.2018.01.003.

Endress, PK. (1997). Antirrhinum and Asteridae--evolutionary changes of floral symmetry. Symp Soc Exp Biol 998(51):133-40.

Galego, L., and Almeida, J. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & development 16(7):880–891. doi:10.1101/gad.221002.

González-Grandío, E., Cubas, P. (2015). TCP transcription factors: evolution, structure, and biochemical function. In D.H. Gonzalez (Ed.), Plant transcription factors evolutionary, structural and functional aspects (pp. 139-151). Oxford, UK: Academic Press.

Hileman, LC. (2014). Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc Lond B Biol Sci 369(1648): 20130348. doi: 10.1098/rstb.2013.0348.

Hsu, HJ., He, CW., Kuo, WH., Hsin, KT., Lu, JY., Pan, ZJ., and Wang, CN. (2018). Genetic analysis of floral symmetry transition in African Violet suggests the involvement of trans-acting factor for CYCLOIDEA expression shifts. Front Plant Sci 9:1008. doi: 10.3389/fpls.2018.01008.

Inukai, S., Kock, K. H., and Bulyk, M. L. (2017). Transcription factor-DNA binding: beyond binding site motifs. Current opinion in genetics & development 43:110–119. doi:10.1016/j.gde.2017.02.007.

Irish, FV. (2008). The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci 13(8):430-436. doi: 10.1016/j.tplants.2008.05.006.

Kanhere, A., and Bansal, M. (2004). DNA bending and curvature: a ''turning'' point in dna function?. Proc Indian natn Sci Acad B70(2):239-254.

Kosugi, S., and Ohashi, Y. (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant cell 9(9):1607–1619. doi:10.1105/tpc.9.9.1607

Kosugi, S., Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337-48.

Kuo, WH. (2014). Ectopic expression of SsCYC in Nicotiana benthamiana and optimizing regeneration system of Sinningia speciosa. (Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan.

Li, C., Potuschak, T., Colón-Carmona, A., Gutiérrez, R.A., and Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102(36): 12978–12983. doi: 10.1073/pnas.0504039102.

Liu, YG., Mitsukawa, N., Oosumi, T., and Whittier, RF. (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457-63.

Liu, YG., Whittier, RF. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 10;25(3):674-81.

Luehrsen, KR., de Wet, JR., and Walbot, V. (1995). Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol 216:397-414.

Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., and Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99(4):367-76.

Martín-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15(1):31-9. doi: 10.1016/j.tplants.2009.11.003.

Müller, M., and Munné-Bosch, S. (2015). Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant physiology 169(1), 32–41. doi:10.1104/pp.15.00677.

Muterko, A., Kalendar, R., Salina, E. (2016). Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol 16(Suppl 1): 9. doi: 10.1186/s12870-015-0691-2.

Neil, PR., Dafni, A., and Giurfa M. (1998). Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu Rev Ecol Syst 29:345–373. doi: https://doi.org/10.1146/annurev.ecolsys.29.1.345.

Pierik, R., Sasidharan, R., and Voesenek, LACJ. (2007). Growth control by ethylene: adjusting phenotypes to the environment. J Plant Growth Regul 26:188–200. doi: 10.1007/s00344-006-0124-4.

Preston, JC., and Hileman, LC. (2009). Developmental genetics of floral symmetry evolution. Trends Plant Sci 14(3):147–154. doi: 10.1016/j.tplants.2008.12.005.

Preston, JC., Kost, MA., and Hileman, LC. (2009). Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytol 182(3):751-762. doi: 10.1111/j.1469-8137.2009.02794.x.

Pruneda-Paz, JL., Breton, G., Para, A., Kay, SA. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323(5920): 1481–1485.

Schommer, C., Palatnik, JF., Aggarwal, P., Chételat, A., Cubas, P., Farmer, EE., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230. doi: 10.1371/journal.pbio.0060230.

Schwartz, C., Balasubramanian, S., Warthmann, N., Michael, T. P., Lempe, J., Sureshkumar, S., Kobayashi, Y., Maloof, JN., Maloof, JN., Borevitz, JO., Chory J, and Weigel, D. (2009). Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 183(2), 723–732. doi:10.1534/genetics.109.104984.

Singer, T., Burke, E. (2003). High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Methods Mol Biol 236:241-72. doi: 10.1385/1-59259-413-1:241

Spencer, V., and Kim, M. (2017). Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol 79:16-26. doi: 10.1016/j.semcdb.2017.08.052.

van der Vliet, PC., Verrijzer, CP. (1993). Bending of DNA by transcription factors. Bioessays 5(1):25-32. doi: 10.1002/bies.950150105.

van Es, SW., Silveira, SR., Rocha, DI., Bimbo, A., Martinelli, AP., Dornelas, MC., Angenent, GC., and Immink, R. (2018). Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. The Plant journal : for cell and molecular biology 94(5):867–879. doi:10.1111/tpj.13904.

Viola, I. L., Reinheimer, R., Ripoll, R., Manassero, N. G., and Gonzalez, D. H. (2011). Determinants of the DNA binding specificity of class I and class II TCP transcription factors. The Journal of biological chemistry 287(1):347–356. doi:10.1074/jbc.M111.256271.

Wang, S., Chang, Y., Guo, J., Zeng, Q., Ellis, BE., and Chen, JG. (2011). Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development. PloS one 6(8):e23896. doi:10.1371/journal.pone.0023896.


Wang, J., Guan, Y., Ding, L., Li, P., Zhao, W., Jiang, J., Chen, S., and Chen, F. (2019). The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248-257. doi: https://doi.org/10.1016/j.plantsci.2018.12.008.

Wang, S., He, J., Cui, Z., and Li, S. (2007). Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Applied and environmental microbiology 73(15):5048–5051. doi:10.1128/AEM.02973-06.

Wang, K., Zhang, X., Zhao, Y., Chen, F., and Xia, G. (2013). Structure, variation and expression analysis of glutenin gene promoters from Triticum aestivum cultivar Chinese Spring shows the distal region of promoter 1Bx7 is key regulatory sequence. Gene 527(2):484-90. doi: 10.1016/j.gene.2013.06.068.

Yang, X., Cui, H., Yuan, ZL., and Wang, YZ. (2010). Significance of consensus CYC-binding sites found in the promoters of both ChCYC and ChRAD genes in Chirita heterotricha (Gesneriaceae). Journal of Systematics and Evolution 48(4):249–256. doi: doi.org/10.1111/j.1759-6831.2010.00086.x.

Yang, X., Pang, HB., Liu, BL., Qiu, ZJ., Gao, Q., Wei, L., Dong, Y., and Wang, Y Z. (2012). Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. The Plant cell 24(5):1834–1847. doi:10.1105/tpc.112.099457.

Ye, NH., Wang, FZ., Shi L., Chen, MX., Cao, YY., Zhu, FY., Wu, YZ., Xie, L.J, Liu, TY., Su, ZZ., Xiao, S., Zhang, H., Yang, J., Gu, HY., Hou, XX., Hu, QJ., Yi, HJ., Zhu, CX., Zhang, J., and Liu, YG. (2018). Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies. Plant J 94(4):612-625. doi: 10.1111/tpj.13881.

Ye, BH. (2018). Identification, expression profiles and characterization of the TCP genes in Sinningia speciosa. (Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan.

Yoo, SD., Cho, YH., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565-72. doi: 10.1038/nprot.2007.199.

Zhou, XR., Wang, YZ., Smith, JF., and Chen, R. (2008). Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Pyhtol 178(3):532-543. doi: 10.1111/j.1469-8137.2008.02384.x.

Zaitlin, D., Pierce, AJ. (2010). Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 2010 53(12):1066-82. doi: 10.1139/G10-077.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top