|
Atchley, WR., and Fitch, WM. (1997). A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci USA 94(10):5172–5176.
Baxter, CE., Costa, MM., and Coen, ES. (2007). Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J 52:105-113. doi: 10.1111/j.1365-313X.2007.03222.x.
Boccacci, P., Mela, A., Pavez Mina, C., Chitarra, W., Perrone, I., Gribaudo, I., and Gambino, G. (2017). Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors. Scientific reports 7:45670. doi:10.1038/srep45670
Boyden, GS., Donoghue, MJ., and Howarth, DG. (2013). Duplications and expression of RADIALIS-like genes in Dipsacales. Int J Plant Sci 173(6):971–983. doi: 10.1093/molbev/msp051.
Brioudes, F., Joly, C., Szécsi, J., Varaud, E., Leroux, J., Bellvert, F., Bertrand, C., and Bendahmane M. (2009). Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60(6):1070-80. doi: 10.1111/j.1365-313X.2009.04023.x.
Chandler, JW. (2011). The hormonal regulation of flower development. J Plant Growth Regul 30(2):242–254. doi:10.1007/s00344-010-9180-x.
Citerne, HL., Moèller, M., and Cronk, QCB. 2000. Diversity of CYCLOIDEA-like genes in Gesneriaceae in relation to floral symmetry. Annals of Botany 86:167-176. doi: 10.1006/anbo.2000.1178.
Corley, SB., Carpenter, R., Copsey, L., and Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci USA 102(14): 5068–5073. doi: 10.1073/pnas.0501340102.
Costa, MM., Fox, S., Hanna, AI., Baxter, C., and Coen, E. (2005). Evolution of regulatory interactions controlling floral asymmetry. Development 132(22):5093-101. doi: 10.1242/dev.02085.
Cubas, P. (2004). Floral zygomorphy, the recurring evolution of a successful trait. Bioessays 26(11):1175-84. doi: 10.1002/bies.20119.
Danisman S. (2016). TCP transcription factors at the interface between environmental challenges and the plant''s growth responses. Frontiers in plant science 7:1930. doi:10.3389/fpls.2016.01930.
de Meaux, J., Goebel U., Pop, A., and Mitchell-Olds, T. (2005). Allele-specific assay reveals functional variation in the Chalcone Synthase promoter of Arabidopsis thaliana that is compatible with neutral evolution. Plant Cell 17(3): 676–690. doi: 10.1105/tpc.104.027839.
Dong, Y., Liu, J., Li, PW., Li, CQ., Lü, TF., Yang, X., and Wang, YZ. (2018). Evolution of Darwin’s Peloric Gloxinia (Sinningia speciosa) is caused by a null mutation in a pleiotropic TCP Gene. Mol Biol Evol 35(8):1901-1915. doi: 10.1093/molbev/msy090.
Dubois, M., Van den Broeck, L., and Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in plant science 23(4):311–323. doi:10.1016/j.tplants.2018.01.003.
Endress, PK. (1997). Antirrhinum and Asteridae--evolutionary changes of floral symmetry. Symp Soc Exp Biol 998(51):133-40.
Galego, L., and Almeida, J. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & development 16(7):880–891. doi:10.1101/gad.221002.
González-Grandío, E., Cubas, P. (2015). TCP transcription factors: evolution, structure, and biochemical function. In D.H. Gonzalez (Ed.), Plant transcription factors evolutionary, structural and functional aspects (pp. 139-151). Oxford, UK: Academic Press.
Hileman, LC. (2014). Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc Lond B Biol Sci 369(1648): 20130348. doi: 10.1098/rstb.2013.0348.
Hsu, HJ., He, CW., Kuo, WH., Hsin, KT., Lu, JY., Pan, ZJ., and Wang, CN. (2018). Genetic analysis of floral symmetry transition in African Violet suggests the involvement of trans-acting factor for CYCLOIDEA expression shifts. Front Plant Sci 9:1008. doi: 10.3389/fpls.2018.01008.
Inukai, S., Kock, K. H., and Bulyk, M. L. (2017). Transcription factor-DNA binding: beyond binding site motifs. Current opinion in genetics & development 43:110–119. doi:10.1016/j.gde.2017.02.007.
Irish, FV. (2008). The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci 13(8):430-436. doi: 10.1016/j.tplants.2008.05.006.
Kanhere, A., and Bansal, M. (2004). DNA bending and curvature: a ''turning'' point in dna function?. Proc Indian natn Sci Acad B70(2):239-254.
Kosugi, S., and Ohashi, Y. (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant cell 9(9):1607–1619. doi:10.1105/tpc.9.9.1607
Kosugi, S., Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30(3):337-48.
Kuo, WH. (2014). Ectopic expression of SsCYC in Nicotiana benthamiana and optimizing regeneration system of Sinningia speciosa. (Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan.
Li, C., Potuschak, T., Colón-Carmona, A., Gutiérrez, R.A., and Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102(36): 12978–12983. doi: 10.1073/pnas.0504039102.
Liu, YG., Mitsukawa, N., Oosumi, T., and Whittier, RF. (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8(3):457-63.
Liu, YG., Whittier, RF. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 10;25(3):674-81.
Luehrsen, KR., de Wet, JR., and Walbot, V. (1995). Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol 216:397-414.
Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., and Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99(4):367-76.
Martín-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends Plant Sci 15(1):31-9. doi: 10.1016/j.tplants.2009.11.003.
Müller, M., and Munné-Bosch, S. (2015). Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant physiology 169(1), 32–41. doi:10.1104/pp.15.00677.
Muterko, A., Kalendar, R., Salina, E. (2016). Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMC Plant Biol 16(Suppl 1): 9. doi: 10.1186/s12870-015-0691-2.
Neil, PR., Dafni, A., and Giurfa M. (1998). Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu Rev Ecol Syst 29:345–373. doi: https://doi.org/10.1146/annurev.ecolsys.29.1.345.
Pierik, R., Sasidharan, R., and Voesenek, LACJ. (2007). Growth control by ethylene: adjusting phenotypes to the environment. J Plant Growth Regul 26:188–200. doi: 10.1007/s00344-006-0124-4.
Preston, JC., and Hileman, LC. (2009). Developmental genetics of floral symmetry evolution. Trends Plant Sci 14(3):147–154. doi: 10.1016/j.tplants.2008.12.005.
Preston, JC., Kost, MA., and Hileman, LC. (2009). Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytol 182(3):751-762. doi: 10.1111/j.1469-8137.2009.02794.x.
Pruneda-Paz, JL., Breton, G., Para, A., Kay, SA. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323(5920): 1481–1485.
Schommer, C., Palatnik, JF., Aggarwal, P., Chételat, A., Cubas, P., Farmer, EE., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):e230. doi: 10.1371/journal.pbio.0060230.
Schwartz, C., Balasubramanian, S., Warthmann, N., Michael, T. P., Lempe, J., Sureshkumar, S., Kobayashi, Y., Maloof, JN., Maloof, JN., Borevitz, JO., Chory J, and Weigel, D. (2009). Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 183(2), 723–732. doi:10.1534/genetics.109.104984.
Singer, T., Burke, E. (2003). High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Methods Mol Biol 236:241-72. doi: 10.1385/1-59259-413-1:241
Spencer, V., and Kim, M. (2017). Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Semin Cell Dev Biol 79:16-26. doi: 10.1016/j.semcdb.2017.08.052.
van der Vliet, PC., Verrijzer, CP. (1993). Bending of DNA by transcription factors. Bioessays 5(1):25-32. doi: 10.1002/bies.950150105.
van Es, SW., Silveira, SR., Rocha, DI., Bimbo, A., Martinelli, AP., Dornelas, MC., Angenent, GC., and Immink, R. (2018). Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. The Plant journal : for cell and molecular biology 94(5):867–879. doi:10.1111/tpj.13904.
Viola, I. L., Reinheimer, R., Ripoll, R., Manassero, N. G., and Gonzalez, D. H. (2011). Determinants of the DNA binding specificity of class I and class II TCP transcription factors. The Journal of biological chemistry 287(1):347–356. doi:10.1074/jbc.M111.256271.
Wang, S., Chang, Y., Guo, J., Zeng, Q., Ellis, BE., and Chen, JG. (2011). Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development. PloS one 6(8):e23896. doi:10.1371/journal.pone.0023896.
Wang, J., Guan, Y., Ding, L., Li, P., Zhao, W., Jiang, J., Chen, S., and Chen, F. (2019). The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248-257. doi: https://doi.org/10.1016/j.plantsci.2018.12.008.
Wang, S., He, J., Cui, Z., and Li, S. (2007). Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Applied and environmental microbiology 73(15):5048–5051. doi:10.1128/AEM.02973-06.
Wang, K., Zhang, X., Zhao, Y., Chen, F., and Xia, G. (2013). Structure, variation and expression analysis of glutenin gene promoters from Triticum aestivum cultivar Chinese Spring shows the distal region of promoter 1Bx7 is key regulatory sequence. Gene 527(2):484-90. doi: 10.1016/j.gene.2013.06.068.
Yang, X., Cui, H., Yuan, ZL., and Wang, YZ. (2010). Significance of consensus CYC-binding sites found in the promoters of both ChCYC and ChRAD genes in Chirita heterotricha (Gesneriaceae). Journal of Systematics and Evolution 48(4):249–256. doi: doi.org/10.1111/j.1759-6831.2010.00086.x.
Yang, X., Pang, HB., Liu, BL., Qiu, ZJ., Gao, Q., Wei, L., Dong, Y., and Wang, Y Z. (2012). Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. The Plant cell 24(5):1834–1847. doi:10.1105/tpc.112.099457.
Ye, NH., Wang, FZ., Shi L., Chen, MX., Cao, YY., Zhu, FY., Wu, YZ., Xie, L.J, Liu, TY., Su, ZZ., Xiao, S., Zhang, H., Yang, J., Gu, HY., Hou, XX., Hu, QJ., Yi, HJ., Zhu, CX., Zhang, J., and Liu, YG. (2018). Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies. Plant J 94(4):612-625. doi: 10.1111/tpj.13881.
Ye, BH. (2018). Identification, expression profiles and characterization of the TCP genes in Sinningia speciosa. (Unpublished master’s thesis). National Taiwan University, Taipei, Taiwan.
Yoo, SD., Cho, YH., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565-72. doi: 10.1038/nprot.2007.199.
Zhou, XR., Wang, YZ., Smith, JF., and Chen, R. (2008). Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Pyhtol 178(3):532-543. doi: 10.1111/j.1469-8137.2008.02384.x.
Zaitlin, D., Pierce, AJ. (2010). Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 2010 53(12):1066-82. doi: 10.1139/G10-077.
|