[1] Whiting D.R., Guariguata L., Weil C., Shaw J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice. 2011;94:311-21.
[2] 台灣衛生署. 民國100年主要死因分析. 2011.
[3] Wang J. Electrochemical glucose biosensors. Chemical Reviews. 2008;108:814-25.
[4] Wang J. Glucose biosensors: 40 Years of advances and challenges. Electroanalysis. 2001;13:983-8.
[5] Clark Jr L.C., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences. 1962;102:29-45.
[6] Updike S.J., Hicks G.P. The Enzyme Electrode. Nature. 1967;214:986-8.
[7] Guilbault G.G., Lubrano G.J. An enzyme electrode for the amperometric determination of glucose. Analytica Chimica Acta. 1973;64:439-55.
[8] Cass A.E.G., Davis G., Francis G.D., Allen O Hill H., Aston W.J., John Higgins I., Plotkin E.V., Scott L.D.L., Turner A.P.F. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry®. 1984;56:667-71.
[9] Frew J.E., Hill H.A.O. Electrochemical biosensors. Analytical Chemistry. 1987;59:933 A-44 A.
[10] Hilditch P.I., Green M.J. Disposable electrochemical biosensors. Analyst. 1991;116:1217-20.
[11] Matthews D.R., Holman R.R., Bown E. Pen-sized digital 30-second blood glucose meter. Lancet. 1987;1:778-9.
[12] Murray R.W., Ewing A.G., Durst R.A. Chemically modified electrodes. Molecular design for electroanalysis. Analytical Chemistry. 1987;59:379A-90A.
[13] Degani Y., Heller A. Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. Journal of Physical Chemistry. 1987;91:1285-9.
[14] Ohara T.J., Rajagopalan R., Heller A. "Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Analytical Chemistry. 1994;66:2451-4.
[15] Willner I., Heleg-Shabtai V., Blonder R., Katz E., Tao G., Bückmann A.F., Heller A. Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. Journal of the American Chemical Society. 1996;118:10321-2.
[16] Bindra D.S., Zhang Y., Wilson G.S., Sternberg R., Thévenot D.R., Moatti D., Reach G. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Analytical Chemistry. 1991;63:1692-6.
[17] Henry C. Getting under the skin: Implantable glucose sensors. Analytical Chemistry. 1998;70:594A-8A.
[18] Schmidtke D.W., Freeland A.C., Heller A., Bonnecaze R.T. Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:294-9.
[19] Yi Q., Huang W., Yu W., Li L., Liu X. Hydrothermal synthesis of titanium-supported nickel nanoflakes for electrochemical oxidation of glucose. Electroanalysis. 2008;20:2016-22.
[20] Park S., Boo H., Chung T.D. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta. 2006;556:46-57.
[21] Toghill K.E., Compton R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. International Journal of Electrochemical Science. 2010;5:1246-301.
[22] Shichiri M., Yamasaki Y., Abe H. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet. 1982;2:1129-31.
[23] Wilson R., Turner A.P.F. Glucose oxidase: An ideal enzyme. Biosensors and Bioelectronics. 1992;7:165-85.
[24] Male K.B., Hrapovic S., Liu Y., Wang D., Luong J.H.T. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta. 2004;516:35-41.
[25] Sun F., Li L., Liu P., Lian Y. Nonenzymatic Electrochemical Glucose Sensor Based on Novel Copper Film. Electroanalysis. 2011;23:395-401.
[26] Wu H.-X., Cao W.-M., Li Y., Liu G., Wen Y., Yang H.-F., Yang S.-P. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochimica Acta. 2010;55:3734-40.
[27] Yang J., Zhang W.-D., Gunasekaran S. An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosensors and Bioelectronics. 2010;26:279-84.
[28] Jiang L.-C., Zhang W.-D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics. 2010;25:1402-7.
[29] Reitz E., Jia W., Gentile M., Wang Y., Lei Y. CuO Nanospheres Based Nonenzymatic Glucose Sensor. Electroanalysis. 2008;20:2482-6.
[30] Wang W., Zhang L., Tong S., Li X., Song W. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosensors and Bioelectronics. 2009;25:708-14.
[31] Zhuang Z., Su X., Yuan H., Sun Q., Xiao D., Choi M.M.F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst. 2008;133:126-32.
[32] Zhang L., Li H., Ni Y., Li J., Liao K., Zhao G. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochemistry Communications. 2009;11:812-5.
[33] El Khatib K.M., Abdel Hameed R.M. Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosensors and Bioelectronics. 2011;26:3542-8.
[34] Li C., Su Y., Zhang S., Lv X., Xia H., Wang Y. An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosensors and Bioelectronics. 2010;26:903-7.
[35] Zhang X., Wang G., Gu A., Wei Y., Fang B. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications. 2008:5945-7.
[36] Gou L., Murphy C.J. Solution-phase synthesis of Cu2O nanocubes. Nano Letters. 2003;3:231-4.
[37] Zhang H., Shen C., Chen S., Xu Z., Liu F., Li J., Gao H. Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology. 2005;16:267-72.
[38] Lu J., Drzal L.T., Worden R.M., Lee I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chemistry of Materials. 2007;19:6240-6.
[39] Sternberg R., Bindra D.S., Wilson G.S., Thévenot D.K. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Analytical Chemistry. 1988;60:2781-6.
[40] 黃炳照, 莊睦賢. 電化學感測器. 化工技術. 1999;第七卷.[41] 黃興閎. 感測器於實車碰撞之應用. 車輛研測資訊. 2006.[42] 陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器. 國立台灣科技大學化學工程研究所碩士論文. 2008.[43] 一之瀨昇, 小林哲二. 感測器原理與應用技術: 全華科技圖書股份有限公司; 1988.
[44] Electrochemical biosensors: Recommended definitions and classification (Technical Report). Pure and Applied Chemistry. 1999;71:2332-48.
[45] Walker J.M., Rapley R. 分子生物學與生物技術: 北京化學工業出版社; 2003.
[46] Turner A.P., Chen B., Piletsky S.A. In vitro diagnostics in diabetes: meeting the challenge. Clin Chem. 1999;45:1596-601.
[47] Castillo J., Gáspár S., Leth S., Niculescu M., Mortari A., Bontidean I., Soukharev V., Dorneanu S.A., Ryabov A.D., Csöregi E. Biosensors for life quality - Design, development and applications. Sensors and Actuators, B: Chemical. 2004;102:179-94.
[48] Diamond D. Principles of chemical and biological sensors. Chemical Analysis. 1998;150.
[49] 蘇宏基. 化學生物感測器. 東華大學化學系.
[50] Chaubey A., Malhotra B.D. Mediated biosensors. Biosensors and Bioelectronics. 2002;17:441-56.
[51] Mohanty S.P., Kougianos E. Biosensors: a tutorial review. Potentials, IEEE. 2006;25:35-40.
[52] 田蔚城. 生物技術的發展與應用: 九州圖書文物; 1997.
[53] 陳春吉. 自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用. 國立成功大學醫學工程研究所碩士論文. 2002.[54] 謝振傑. 光纖生物感測器. 物理雙月刊. 2006;第廿八卷.[55] 許峰碩. 奈米碳黑在免疫層析檢測上的應用. 國立中興大學化學工程所碩士論文. 2002.[56] Spichiger-Keller U.E. Chemical Sensors and Biosensors for Medical and Biological Applications: Wiley-VCH; 1998.
[57] Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. New York Wiley; 2001.
[58] 汪玉銘. 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究. 國立成功大學化學工程所博士論文. 2003.[59] 李家逢. 新穎鉑鈀多層壁奈米碳管之電化學觸媒於電流式葡萄糖感測器之製備與應用. 國立台灣科技大學化學工程研究所碩士論文. 2011.[60] Yalcinkaya F., Powner E.T. Intelligent structures. Sensor Review. 1996;16:32-7.
[61] D'Orazio P. Biosensors in clinical chemistry. Clinica Chimica Acta. 2003;334:41-69.
[62] Kissinger P.T., Heineman W.R. Laboratory Techniques in Electroanalytical Chemistry. New York: Marcel Dekker.; 1996.
[63] Mehrvar M., Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Sciences. 2004;20:1113-26.
[64] Shen J., Dudik L., Liu C.-C. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B: Chemical. 2007;125:106-13.
[65] Moussy F., Jakeway S., Jed Harrison D., Rajotte R.V. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Analytical Chemistry. 1994;66:3882-8.
[66] Wang J., Wu H. Permselective lipid?掫oly(o-phenylenediamine) coatings for amperometric biosensing of glucose. Analytica Chimica Acta. 1993;283:683-8.
[67] Li J., Lin X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosensors and Bioelectronics. 2007;22:2898-905.
[68] Dong S., Wang B., Liu B. Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosensors and Bioelectronics. 1992;7:215-22.
[69] Ghica M.E., Brett C.M.A. Development of a carbon film electrode ferrocene-mediated glucose biosensor. Analytical Letters. 2005;38:907-20.
[70] Ming L., Xi X., Liu J. Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors. Biotechnology Letters. 2006;28:1341-5.
[71] Zhang Z., Liu H., Deng J. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode. Analytical Chemistry. 1996;68:1632-8.
[72] Wang J., Liu J., Chen L., Lu F. Highly selective membrane-free, mediator-free glucose biosensor. Analytical Chemistry. 1994;66:3600-3.
[73] Comba F.N., Rubianes M.D., Herrasti P., Rivas G.A. Glucose biosensing at carbon paste electrodes containing iron nanoparticles. Sensors and Actuators B: Chemical. 2010;149:306-9.
[74] Derwinska K., Miecznikowski K., Koncki R., Kulesza P.J., Glab S., Malik M.A. Application of Prussian Blue Based Composite Film with Functionalized Organic Polymer to Construction of Enzymatic Glucose Biosensor. Electroanalysis. 2003;15:1843-9.
[75] Li T., Yao Z., Ding L. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto Prussian Blue modified electrode. Sensors and Actuators, B: Chemical. 2004;101:155-60.
[76] Zhao W., Xu J.-J., Shi C.-G., Chen H.-Y. Multilayer Membranes via Layer-by-Layer Deposition of Organic Polymer Protected Prussian Blue Nanoparticles and Glucose Oxidase for Glucose Biosensing. Langmuir. 2005;21:9630-4.
[77] Ferreira M., Fiorito P.A., Oliveira Jr O.N., Córdoba De Torresi S.I. Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors and Bioelectronics. 2004;19:1611-5.
[78] Heller A. Electrical wiring of redox enzymes. Accounts of Chemical Research. 1990;23:128-34.
[79] Calvo E.J., Danilowicz C. Amperometric enzyme electrodes. Journal of the Brazilian Chemical Society. 1997;8:563-74.
[80] Ghindilis A.L., Atanasov P., Wilkins E. Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications. Electroanalysis. 1997;9:661-74.
[81] Vassilyev Y.B., Khazova O.A., Nikolaeva N.N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1985;196:105-25.
[82] Hsiao M.W., Adzic R.R., Yeager E.B. The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes. Electrochimica Acta. 1992;37:357-63.
[83] Sakamoto M., Takamura K. Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose. Bioelectrochemistry and Bioenergetics. 1982;9:571-82.
[84] Rong L.-Q., Yang C., Qian Q.-Y., Xia X.-H. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta. 2007;72:819-24.
[85] Song Y.Y., Zhang D., Gao W., Xia X.H. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chemistry - A European Journal. 2005;11:2177-82.
[86] Kurniawan F., Tsakova V., Mirsky V.M. Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis. 2006;18:1937-42.
[87] Zhou Y.-G., Yang S., Qian Q.-Y., Xia X.-H. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochemistry Communications. 2009;11:216-9.
[88] Cui H.-F., Ye J.-S., Zhang W.-D., Li C.-M., Luong J.H.T., Sheu F.-S. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Analytica Chimica Acta. 2007;594:175-83.
[89] You T., Niwa O., Chen Z., Hayashi K., Tomita M., Hirono S. An Amperometric Detector Formed of Highly Dispersed Ni Nanoparticles Embedded in a Graphite-like Carbon Film Electrode for Sugar Determination. Analytical Chemistry. 2003;75:5191-6.
[90] Chou C.-H., Chen J.-C., Tai C.-C., Sun I.W., Zen J.-M. A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water-Insensitive Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid. Electroanalysis. 2008;20:771-5.
[91] Lee Y.-J., Park D.-J., Park J.-Y., Kim Y. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon. Sensors. 2008;8:6154-64.
[92] Bai Y., Yang W., Sun Y., Sun C. Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical. 2008;134:471-6.
[93] Deng Y., Huang W., Chen X., Li Z. Facile fabrication of nanoporous gold film electrodes. Electrochemistry Communications. 2008;10:810-3.
[94] Bai Y., Sun Y., Sun C. Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics. 2008;24:579-85.
[95] Cherevko S., Chung C.-H. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors and Actuators B: Chemical. 2009;142:216-23.
[96] Yuan J., Wang K., Xia X. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Advanced Functional Materials. 2005;15:803-9.
[97] Pletcher D. Electrocatalysis: present and future. Journal of Applied Electrochemistry. 1984;14:403-15.
[98] Hsiao M.W., Adžić R.R., Yeager E.B. Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. Journal of the Electrochemical Society. 1996;143:759-67.
[99] Vassilyev Y.B., Khazova O.A., Nikolaeva N.N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part II. Effect of the nature of the electrode and the electrooxidation mechanism. Journal of Electroanalytical Chemistry. 1985;196:127-44.
[100] A. Larew L., Johnson D.C. Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1989;262:167-82.
[101] Burke L.D. Premonolayer oxidation and its role in electrocatalysis. Electrochimica Acta. 1994;39:1841-8.
[102] Lertanantawong B., O'Mullane A.P., Surareungchai W., Somasundrum M., Burke L.D., Bond A.M. Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude fourier transformed alternating current voltammetry. Langmuir. 2008;24:2856-68.
[103] Shiddiky M.J.A., O'Mullane A.P., Zhang J., Burke L.D., Bond A.M. Large amplitude fourier transformed AC voltammetric investigation of the active state electrochemistry of a copper/aqueous base interface and implications for electrocatalysis. Langmuir. 2011;27:10302-11.
[104] 王世敏, 許祖勛, 傅晶. 奈米材料原理與製備: 五南出版社; 2004.
[105] 馬振基. 奈米材料科技原理與應用: 全華科技圖書股份有限公司; 2005.
[106] Okitsu K., Bandow H., Maeda Y., Nagata Y. Sonochemical Preparation of Ultrafine Palladium Particles. Chemistry of Materials. 1996;8:315-7.
[107] Yu S.-H., Shu L., Yang J., Tang K.-B., Xie Y., Qian Y.-T., Zhang Y.-H. Benzene-thermal synthesis and optical properties of CdS nanocrystalline. Nanostructured Materials. 1998;10:1307-16.
[108] Antolini E., Cardellini F. Formation of carbon supported PtRu alloys: an XRD analysis. Journal of Alloys and Compounds. 2001;315:118-22.
[109] Watanabe M., Uchida M., Motoo S. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1987;229:395-406.
[110] Hamnett A., Kennedy B.J., Wagner F.E. Pt?悐u anodes for methanol electrooxidation: A ruthenium-99 Mössbauer study. Journal of Catalysis. 1990;124:30-40.
[111] Wang X., Hsing I.M. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells. Electrochimica Acta. 2002;47:2981-7.
[112] Liu Z., Lee J.Y., Chen W., Han M., Gan L.M. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles. Langmuir. 2003;20:181-7.
[113] Zhang X., Chan K.-Y. Water-in-Oil Microemulsion Synthesis of Platinum−Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties. Chemistry of Materials. 2002;15:451-9.
[114] 張義泉. 具界面活性擬樹枝狀聚乙烯亞胺之合成與製備燃料電池觸媒之應用. 國立成功大學化學工程研究所碩士論文. 2005.[115] Pileni M.P., Ninham B.W., Gulik-Krzywicki T., Tanori J., Lisiecki I., Filankembo A. Direct Relationship Between Shape and Size of Template and Synthesis of Copper Metal Particles. Advanced Materials. 1999;11:1358-62.
[116] 裘性天, 黃亭凱. 特殊形貌銅與銀奈米材料製備之簡介. The Chinese Chemical Society, Taipei. 2007;65:9-16.[117] 張澔洧, 張文翔, 游竣翔, 劉鎮維. 奈米級鉑材料的合成及應用. The Chinese Chemical Society, Taipei. 2007;65:27-33.[118] Wang J., Rivas G., Chicharro M. Iridium-dispersed carbon paste enzyme electrodes. Electroanalysis. 1996;8:434-7.
[119] Kohma T., Oyamatsu D., Kuwabata S. Preparation of selective micro glucose sensor without permselective membrane by electrochemical deposition of ruthenium and glucose oxidase. Electrochemistry Communications. 2007;9:1012-6.
[120] Huang J., Wang D., Hou H., You T. Electrospun Palladium Nanoparticle-Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Advanced Functional Materials. 2008;18:441-8.
[121] Li G., Xu H., Huang W., Wang Y., Wu Y., Parajuli R. A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes. Measurement Science and Technology. 2008;19.
[122] Xue C.H., Zhou R.J., Shi M.M., Wu G., Zhang X.B., Wang M., Chen H.Z. Electrochemistry of glucose oxidase immobilized on carbon nanotubes noncovalently functionalized by multihydroxyl and multicarboxyl groups. Journal of Electroanalytical Chemistry. 2010;642:92-7.
[123] Zhong H., Yuan R., Chai Y., Li W., Zhong X., Zhang Y. In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: Characterization and application for a glucose amperometric biosensor. Talanta. 2011;85:104-11.
[124] Si P., Kannan P., Guo L., Son H., Kim D.H. Highly stable and sensitive glucose biosensor based on covalently assembled high density Au nanostructures. Biosensors and Bioelectronics. 2011;26:3845-51.
[125] Barbadillo M., Casero E., Petit-Domínguez M.D., Vázquez L., Pariente F., Lorenzo E. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material. Talanta. 2009;80:797-802.
[126] Zhang S., Wang N., Yu H., Niu Y., Sun C. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry. 2005;67:15-22.
[127] Freeman R.G., Grabar K.C., Allison K.J., Bright R.M., Davis J.A., Guthrie A.P., Hommer M.B., Jackson M.A., Smith P.C., Walter D.G., Natan M.J. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science. 1995;267:1629-32.
[128] Zayats M., Katz E., Baron R., Willner I. Reconstitution of Apo-Glucose Dehydrogenase on Pyrroloquinoline Quinone-Functionalized Au Nanoparticles Yields an Electrically Contacted Biocatalyst. Journal of the American Chemical Society. 2005;127:12400-6.
[129] Willner I., Baron R., Willner B. Integrated nanoparticle–biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics. 2007;22:1841-52.
[130] Yehezkeli O., Tel-Vered R., Raichlin S., Willner I. Nano-engineered Flavin-Dependent Glucose Dehydrogenase/Gold Nanoparticle-Modified Electrodes for Glucose Sensing and Biofuel Cell Applications. ACS Nano. 2011;5:2385-91.
[131] Zhang X., Wang G., Liu X., Wu J., Li M., Gu J., Liu H., Fang B. Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensors. The Journal of Physical Chemistry C. 2008;112:16845-9.
[132] Xia Y., Huang W., Zheng J., Niu Z., Li Z. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosensors and Bioelectronics. 2011;26:3555-61.
[133] Tumolo T., Nakamura M., Araki K., Baptista M.S. Effect of cations/polycations on the efficiency of formation of a hybrid bilayer membrane that mimics the inner mitochondrial membrane. Colloids and Surfaces B: Biointerfaces. 2012;91:1-9.
[134] Maines A., Ashworth D., Vadgama P. Diffusion restricting outer membranes for greatly extended linearity measurements with glucose oxidase enzyme electrodes. Analytica Chimica Acta. 1996;333:223-31.
[135] Wang J., Chen S.-P., Lin M.S. Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1989;273:231-42.
[136] 陸瑞東. 以聯氨還原製備質子交換膜燃料電池鉑鎳碳陰極之研究. 國立成功大學化學工程研究所碩士論文. 2005.
[137] Gode P., Lindbergh G., Sundholm G. In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectrode. Journal of Electroanalytical Chemistry. 2002;518:115-22.
[138] Eisenberg A., Yeager H.L. Perfluorinated ionomer membranes : developed in advance of the Polymer Division topical workshop on per-fluorinated ionomer membranes. Washington, D.C.: American Chemical Society; 1982.
[139] Jörissen J. Ion exchange membranes as solid polymer electrolytes (spe) in electro-organic syntheses without supporting electrolytes. Electrochimica Acta. 1996;41:553-62.
[140] Fan Z., Harrison D.J. Permeability of glucose and other neutral species through recast perfluorosulfonated ionomer films. Analytical Chemistry. 1992;64:1304-11.
[141] Lim S.H., Wei J., Lin J., Li Q., KuaYou J. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics. 2005;20:2341-6.
[142] Ott E., Bikales N.M., Segal L. Cellulose and cellulose derivatives: Interscience Publishers; 1954.
[143] Gilbert R.D. Cellulosic Polymers, Blends, and Composites: Hanser Publishers; 1994.
[144] Cunningham D.D. Integration of compressed and composite immobilized enzyme membranes into an injection molded pin format by ultrasonic welding. Sensors and Actuators B: Chemical. 2002;87:371-8.
[145] Hart J.P., Wring S.A. Recent developments in the design and application of screen-printed electrochemical sensors for biomedical, environmental and industrial analyses. TrAC Trends in Analytical Chemistry. 1997;16:89-103.
[146] Prodromidis M.I., Karayannis M.I. Enzyme Based Amperometric Biosensors for Food Analysis. Electroanalysis. 2002;14:241-61.
[147] 胡啟章. 電化學原理與方法: 五南圖書出版公司; 2002.
[148] 彭文權. 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 元智大學化學工程研究所碩士論文. 1997.[149] Eggins B.R. Chemical Sensors and Biosensors. New York Wiley; 2005.
[150] Chen Z., Jiang J., Shen G., Yu R. Impedance immunosensor based on receptor protein adsorbed directly on porous gold film. Analytica Chimica Acta. 2005;553:190-5.
[151] Macdonald J.R. Impedance spectroscopy: emphasizing solid materials and systems. New York Wiley; 1987.
[152] JCPOS No.05-0667.
[153] Jana N.R., Gearheart L.A., Obare S.O., Johnson C.J., Edler K.J., Mann S., Murphy C.J. Liquid crystalline assemblies of ordered gold nanorods. Journal of Materials Chemistry. 2002;12:2909-12.
[154] Hou J.-W., Yang X.-C., Cui M.-M., Huang M., Wang Q.-Y. Synthesis and optical property of one-dimensional Ag–Cu2O heterojunctions. Materials Letters. 2012;74:159-62.
[155] Dake L.S., King D.E., Czanderna A.W. Ion scattering and X-ray photoelectron spectroscopy of copper overlayers vacuum deposited onto mercaptohexadecanoic acid self-assembled monolayers. Solid State Sciences. 2000;2:781-9.
[156] Xie Y., Huber C.O. Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Analytical Chemistry. 1991;63:1714-9.
[157] Lee S.-H., Fang H.-Y., Chen W.-C. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture. Sensors and Actuators B: Chemical. 2006;117:236-43.
[158] Wei H., Sun J.-J., Guo L., Li X., Chen G.-N. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chemical Communications. 2009:2842-4.
[159] Wang J., Zhang W.-D. Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochimica Acta. 2011;56:7510-6.
[160] Anu Prathap M.U., Kaur B., Srivastava R. Direct synthesis of metal oxide incorporated mesoporous SBA-15, and their applications in non-enzymatic sensing of glucose. Journal of Colloid And Interface Science. 2012;381:143-51.