跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃培舜
研究生(外文):Pei-Sun Huang
論文名稱:可放大之溼式沈積法製備沸石薄膜
論文名稱(外文):Scalable Wet Deposition of Zeolite Thin Film
指導教授:康敦彥王大銘
指導教授(外文):Dun-Yen KangDa-Ming Wang
口試委員:謝之真李文亞江偉宏
口試委員(外文):Chih-Chen HsiehWen-Ya LeeWei-Hung Chiang
口試日期:2018-01-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:104
中文關鍵詞:沸石沸石薄膜濕式沈積法低介電材料
相關次數:
  • 被引用被引用:0
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
沸石為高結晶性的微孔洞材料,沸石薄膜可用於催化反應或化工分離程序。二次生長法為最被廣泛使用的沸石薄膜製備方法,但是此方式需要的合成時間較長、且不利於工業量產。本論文提出一種可放大的溼式沈積法來製備沸石薄膜,並將此方法實現在FAU、AEI等兩種不同的沸石系統上。在本研究的第一部分,我們利用此方法來製備FAU型態的沸石薄膜。我們利用酸鹼值來調控FAU型態的沸石FAU懸浮溶液的穩定性,並且利用動態光散射來研究膠體懸浮溶液的性質。我們發現,在酸鹼值較高的情況下(pH=13.5),膠體懸浮溶液的穩定性較差,成膜後其薄膜表面粗糙度較不佳;在酸鹼值較低的狀況下(pH=12.5),沸石懸浮液較穩定、且可形成薄膜表面粗糙度較均一的薄膜。而酸鹼值較高的溶液所製備出的薄膜其沸石FAU晶格會轉換成另一種晶格並形成無孔較緻密的薄膜。我們也在不同頻率下量測這些FAU型態的沸石薄膜之介電常數,在高頻(1000 kHz)下,介電常數最低可達2.1。
本研究的第二部分,我們提出利用濕式沈積的法式製備出晶體有高度方向性排列的AEI型態沸石薄膜。我們將組成為磷酸鋁鹽的沸石AEI膠體懸浮溶液塗佈在矽晶圓基材上,製備出的沸石薄膜;同時利用略角入射廣角之X光散射技術得到2維的繞射圖譜。經由實驗與電腦模擬之繞射圖譜比對,確認了此沸石薄膜具有高度的方向性排列。同時我們也系統性地探討了晶體大小、塗布方法、基材種類等實驗條件對於沸石晶體在薄膜中沿著特定方向排列的影響。我們也觀察到有高度方向性排列的AEI型態沸石薄膜可以改善電性性質和分離效果。最後,我們也嘗試將沸石薄膜沈積在大尺寸的六吋晶圓上,證明此溼式沈積法有機會大規模製造具備高度方向性排列之沸石薄膜。
Zeolites are microporous materials with high crystallinity. Zeolite membranes and thin films can be used for catalytic reaction or separation processes in the chemical industry. Secondary growth is the most popular approach to the preparation of zeolite thin films and membranes; however, this process is time-consuming and is difficult for large-scale production. In this thesis, we proposed a scalable wet deposition method for preparing zeolite thin films. As a proof of concept, we implemented this method to fabricate zeolite thin films with two different zeolites: FAU and AEI. The first part of this thesis discusses, the fabrication of zeolite FAU thin films. Zeolite FAU suspensions are prepared at various pH values. Dynamic light scattering (DLS) was used to investigate the colloidal properties of the zeolite FAU suspensions. It was found that high pH value (pH = 13.5) destabilize the colloidal suspensions and results in high surface roughness of thin film. For the thin films formed from suspensions with high pH value, the zeolite FAU crystals transform into a dense phase. At relatively low pH value (pH = 12.5), the colloidal suspension is more stable. The thin film samples cast using this FAU suspension yields thin films with uniform morphology. We measured the dielectric constant of zeolite FAU thin film samples at various frequency. At high frequency (1000 kHz), thin films with a zeolite FAU structure exhibited dielectric constant as low as 2.1.
In the second part of the study, we proposed a new approach to fabricating zeolite AEI thin films with high degree of crystal orientation via direct wet deposition. We deposit the colloidal suspensions that comprise aluminophosphate zeolite AEI on silicon wafer substrate. We combine the experimental and simulated 2D patterns of grazing-incidence wide-angle X-ray scattering (GIWAXS) to investigate the polycrystal orientation distribution in zeolite thin films. We elucidate the influence of crystal size, the deposition method, and substrate surface properties on the degree of preferred crystal orientation. Improved electrical properties and separation performance were observed for the zeolite thin films/membranes with high degree of preferred crystal orientation. Finally, we apply this method on the deposition of zeolite AEI thin films on a 6-inch silicon wafer to demonstrate the scalability of the proposed wet deposition technique.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents vii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Method 12
2.1 Materials of zeolite FAU 12
2.2 Preparation of zeolite FAU suspensions 12
2.3 Characterization of zeolite FAU suspensions 14
2.4 Preparation of zeolite FAU powder 16
2.5 Characterization of zeolite FAU powder 17
2.6 Preparation of zeolite FAU thin films 17
2.7 Characterization of zeolite FAU thin films 18
2.8 Materials of zeolite AEI 20
2.9 Preparation of zeolite AEI suspensions 21
2.10 Characterization of zeolite AEI suspensions 23
2.11 Polishing porous α-alumina disks 24
2.12 Deposition of zeolite AEI thin films and membranes using spin-coating 24
2.13 Deposition of zeolite AEI thin films using ultrasonic nozzle spray deposition 25
2.14 Characterization of zeolite AEI thin films and membranes 27
Chapter 3 Zeolite FAU 30
3.1 Introduction 30
3.2 Result and Disscusion 31
3.2.1 Properties of cast suspensions 31
3.2.2 DLS analysis of cast suspensions 34
3.2.3 Morphology of thin films 38
3.2.4 Crystallinity of thin films 45
3.2.5 Dielectric properties of zeolite thin films 52
3.3 Summary 54
Chapter 4 Zeolite AEI 56
4.1 Introduction 56
4.2 Result and Disscusion 57
4.2.1 Effects of surfactant 57
4.2.2 Effects of crystals size 63
4.2.3 Dielectric properties of zeolite thin films 67
4.2.4 Effects of the surface properties of the substrate and the deposition method 68
4.2.5 The pervaporation of zeolite membranes 74
4.2.6 Large-scale deposition 76
4.3 Summary 78
Chapter 5 Conclusions 79
Chapter 6 Outlook 80
Appendix 81
References 90
1.Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373-2419.
2.Ackley, M. Application of Natural Zeolites in the Purification and Separation of Gases. Microporous Mesoporous Mater. 2003, 61, 25-42.
3.Tagliabue, M.; Farrusseng, D.; Valencia, S.; Aguado, S.; Ravon, U.; Rizzo, C.; Corma, A.; Mirodatos, C. Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay. Chem. Eng. J. 2009, 155, 553-566.
4.Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24.
5.Hedstrom, A. Ion Exchange of Ammonium in Zeolites: A Literature Review. J. Environ. Eng. 2001, 127, 673-681.
6.Morigami, Y.; Kondo, M.; Abe, J.; Kita, H.; Okamoto, K. The First Large-Scale Pervaporation Plant Using Tubular-Type Module with Zeolite NaA Membrane. Sep. Purif. Technol. 2001, 25, 251-260.
7.Liu, D.; Zhang, Y.; Jiang, J.; Wang, X.; Zhang, C.; Gu, X. High-Performance NaA Zeolite Membranes Supported on Four-Channel Ceramic Hollow Fibers for Ethanol Dehydration. RSC Adv. 2015, 5, 95866-95871.
8.Tomita, T.; Nakayama, K.; Sakai, H. Gas Separation Characteristics of DDR Type Zeolite Membrane. Microporous Mesoporous Mater. 2004, 68, 71-75.
9.Li, S. SAPO-34 Membranes for CO2/CH4 Separation. J. Membr. Sci. 2004, 241, 121-135.
10.Kazemimoghadam, M.; Mohammadi, T. Synthesis of MFI Zeolite Membranes for Water Desalination. Desalination 2007, 206, 547-553.
11.Haag, S.; Hanebuth, M.; Mabande, G. T. P.; Avhale, A.; Schwieger, W.; Dittmeyer, R. On the Use of A Catalytic H-ZSM-5 Membrane for Xylene Isomerization. Microporous Mesoporous Mater. 2006, 96, 168-176.
12.Pellejero, I.; Urbiztondo, M.; Izquierdo, D.; Irusta, S.; Salinas, I.; Pina, M. P. An Optochemical Humidity Sensor Based on Immobilized Nile Red in Y Zeolite. Ind. Eng. Chem. Res. 2007, 46, 2335-2341.
13.Sohrabnezhad, S.; Pourahmad, A.; Sadjadi, M. A. New Methylene Blue Incorporated in Mordenite Zeolite as Humidity Sensor Material. Mater. Lett. 2007, 61, 2311-2314.
14.Osada, M.; Sasaki, I.; Nishioka, M.; Sadakata, M.; Okubo, T. Synthesis of A Faujasite Thin Layer and Its Application for SO2 Sensing at Elevated Temperatures. Microporous Mesoporous Mater. 1998, 23, 287-294.
15.Wang, Z. B.; Wang, H. T.; Mitra, A.; Huang, L. M.; Yan, Y. S. Pure-Silica Zeolite Low-k Dielectric Thin Films. Adv. Mater. 2001, 13, 746-749.
16.Li, S.; Li, Z. J.; Medina, D.; Lew, C.; Yan, Y. S. Organic-Functionalized Pure-Silica-Zeolite MFI Low-k Films. Chem. Mater. 2005, 17, 1851-1854.
17.Mitra, A.; Cao, T. G.; Wang, H. T.; Wang, Z. B.; Huang, L. M.; Li, S.; Li, Z. J.; Yan, Y. S. Synthesis and Evaluation of Pure-Silica-Zeolite BEA as Low Dielectric Constant Material for Microprocessors. Ind. Eng. Chem. Res. 2004, 43, 2946-2949.
18.Liu, Y.; Sun, M.; Lew, C. M.; Wang, J.; Yan, Y. MEL-Type Pure-Silica Zeolite Nanocrystals Prepared by An Evaporation-Assisted Two-Stage Synthesis Method as Ultra-Low-k Materials. Adv. Funct. Mater. 2008, 18, 1732-1738.
19.Hunt, H. K.; Lew, C. M.; Sun, M.; Yan, Y.; Davis, M. E. Pure-silica LTA, CHA, STT, ITW, and -SVR Thin Films and Powders for Low-k Applications. Microporous Mesoporous Mater. 2010, 130, 49-55.
20.Feng, C.; Khulbe, K. C.; Matsuura, T.; Farnood, R.; Ismail, A. F. Recent Progress in Zeolite/Zeotype Membranes. J. Membr. Sci. Res. 2015, 1, 49-72.
21.Dragomirova, R.; Wohlrab, S. Zeolite Membranes in Catalysis—From Separate Units to Particle Coatings. Catalysts 2015, 5, 2161-2222.
22.Rangnekar, N.; Mittal, N.; Elyassi, B.; Caro, J.; Tsapatsis, M. Zeolite Membranes—A Review and Comparison with MOFs. Chem. Soc. Rev. 2015, 44, 7128-7154.
23.Yan, Y. S.; Davis, M. E.; Gavalas, G. R. Preparation of Zeolite ZSM-5 Membranes by In-Situ Crystallization on Porous Alpha-Al2O3. Ind. Eng. Chem. Res. 1995, 34, 1652-1661.
24.Tuan, V. A.; Li, S. G.; Falconer, J. L.; Noble, R. D. In Situ Crystallization of Beta Zeolite Membranes and Their Permeation and Separation Properties. Chem. Mater. 2002, 14, 489-492.
25.Wang, Z. B.; Yan, Y. S. Controlling Crystal Orientation in Zeolite MFI Thin Films by Direct In Situ Crystallization. Chem. Mater. 2001, 13, 1101-1107.
26.Čejka, J.; van Bekkum, H.; Corma, A.; Schüth, F. Introduction to Zeolite Science and Practice, third edition, Elsevier, New York, 2007, 168.
27.Xomeritakis, G.; Gouzinis, A.; Nair, S.; Okubo, T.; He, M. Y.; Overney, R. M.; Tsapatsis, M. Growth, Microstructure, and Permeation Properties of Supported Zeolite (MFI) Films and Membranes Prepared by Secondary Growth. Chem. Eng. Sci. 1999, 54, 3521-3531.
28.Bernal, M. P.; Xomeritakis, G.; Tsapatsis, M. Tubular MFI Zeolite Membranes Made by Secondary (Seeded) Growth. Catal. Today 2001, 67, 101-107.
29.Pan, M.; Lin, Y. S. Template-Free Secondary Growth Synthesis of MFI Type Zeolite Membranes. Microporous Mesoporous Mater. 2001, 43, 319-327.
30.Xu, W. Y.; Dong, J. X.; Li, J. P.; Li, J. Q.; Wu, F. A Novel Method for the Preparation of Zeolite ZSM-5. J. Chem. Soc., Chem. Commun. 1990, 755-756.
31.Matsufuji, T.; Nishiyama, N.; Ueyama, K.; Matsukata, M. Permeation Characteristics of Butane Isomers through MFI-Type Zeolitic Membranes. Catal. Today 2000, 56, 265-273.
32.Alfaro, S.; Arruebo, M.; Coronas, J.; Menendez, M.; Santamaria, J. Preparation of MFI Type Tubular Membranes by Steam-Assisted Crystallization. Microporous Mesoporous Mater. 2001, 50, 195-200.
33.Lu, H. Y.; Kung, C. H.; Wan, B. Z. Crystallinity Control of Zeolite Nanoparticles for the Preparation of Mesoporous Low-k Films through A Fast Hydrothermal Process. J. Taiwan Inst. Chem. Eng. 2012, 43, 971-979.
34.Lu, H. Y.; Teng, C. L.; Yu, C. W.; Liu, Y. C.; Wan, B. Z. Addition of Surfactant Tween 80 in Coating Solutions for Making Mesoporous Pure Silica Zeolite MFI Low-k Films. Ind. Eng. Chem. Res. 2010, 49, 6279-6286.
35.Mintova, S.; Bein, T., Microporous Films Prepared by Spin-Coating Stable Colloidal Suspensions of Zeolites. Adv. Mater. 2001, 13, 1880-1883.
36.Doyle, A. M.; Rupprechter, G.; Pfänder, N.; Schlögl, R.; Kirschhock, C. E. A.; Martens, J. A.; Freund, H. J. Ultra-Thin Zeolite Films Prepared by Spin-Coating Silicalite-1 Precursor Solutions. Chem. Phys. Lett. 2003, 382, 404-409.
37.Lew, C. M.; Li, Z.; Li, S.; Hwang, S. J.; Liu, Y.; Medina, D. I.; Sun, M.; Wang, J.; Davis, M. E.; Yan, Y. Pure-Silica-Zeolite MFI and MEL Low-Dielectric-Constant Films with Fluoro-Organic Functionalization. Adv. Funct. Mater. 2008, 18, 3454-3460.
38.Li, Z. J.; Lew, C. M.; Li, S.; Medina, D. I.; Yan, Y. S. Pure-Silica-Zeolite MEL Low-k Films from Nanoparticle Suspensions. J. Phys. Chem. B 2005, 109, 8652-8658.
39.Mintova, S.; Reinelt, M.; Metzger, T. H.; Senker, J.; Bein, T. Pure Silica Beta Colloidal Zeolite Assembled in Thin Films. Chem. Commun. 2003, 326-327.
40.Vilaseca, M.; Mintova, S.; Karaghiosoff, K.; Metzger, T. H.; Bein, T. AIPO4-18 Synthesized from Colloidal Precursors and Its Use for the Preparation of Thin Films. Appl. Surf. Sci. 2004, 226, 1-6.
41.Lee, J. A.; Meng, L.; Norris, D. J.; Scriven, L. E.; Tsapatsis, M. Colloidal Crystal Layers of Hexagonal Nanoplates by Convective Assembly. Langmuir 2006, 22, 5217-5219.
42.Xu, M. X.; He, Y.; Wang, Y. P.; Cui, X. M. Preparation of A Non-Hydrothermal NaA Zeolite Membrane and Defect Elimination by Vacuum-Inhalation Repair Method. Chem. Eng. Sci. 2017, 158, 117-123.
43.Beers, A. E. W.; Nijhuis, T. A.; Aalders, N.; Kapteijn, F.; Moulijn, J. A. BEA Coating of Structured Supports—Performance in Acylation. Appl. Catal., A 2003, 243, 237-250.
44.Landau, M. V.; Tavor, D.; Regev, O.; Kaliya, M. L.; Herskowitz, M.; Valtchev, V.; Mintova, S. Colloidal Nanocrystals of Zeolite Beta Stabilized in Alumina Matrix. Chem. Mater. 1999, 11, 2030-2037.
45.Sashkina, K. A.; Qi, Z.; Wu, W.; Ayupov, A. B.; Lysikov, A. I.; Parkhomchuk, E. V. The Effect of H2O/SiO2 Ratio in Precursor Solution on the Crystal Size and Morphology of Zeolite ZSM-5. Microporous Mesoporous Mater. 2017, 244, 93-100.
46.Kuzniatsova, T.; Kim, Y.; Shqau, K.; Dutta, P. K.; Verweij, H. Zeta Potential Measurements of Zeolite Y: Application in Homogeneous Deposition of Particle Coatings. Microporous Mesoporous Mater. 2007, 103, 102-107.
47.Watanabe, R.; Yokoi, T.; Tatsumi, T. Synthesis and Application of Colloidal Nanocrystals of the MFI-Type Zeolites. J. Colloid Interface Sci. 2011, 356, 434-441.
48.Kobler, J.; Abrevaya, H.; Mintova, S.; Bein, T. High-Silica Zeolite-Beta: From Stable Colloidal Suspensions to Thin Films. J. Phys. Chem. C 2008, 112, 14274-14280.
49.Kallus, S.; Condre, J. M.; Hahn, A.; Golemme, G.; Algieri, C.; Dieudonné, P.; Timmins, P.; Ramsay, J. D. F. Colloidal Zeolites and Zeolite Membranes. J. Mater. Chem. 2002, 12, 3343-3350.
50.Schoeman, B. J.; Sterte, J. Colloidal Zeolite-Preparation, Properties and Applications. KONA Powder Part. J. 1997, 15, 150-158.
51.Lu, H. Y.; Teng, C. L.; Kung, C. H.; Wan, B. Z. Preparing Mesoporous Low-k films with High Mechanical Strength from Noncrystalline Silica Particles. Ind. Eng. Chem. Res. 2011, 50, 3265-3273.
52.Kosinov, N.; Hensen, E. J. M. Synthesis and Separation Properties of An α-Alumina-Supported High-Silica MEL Membrane. J. Membr. Sci. 2013, 447, 12-18.
53.Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A.; Kokkoli, E.; Terasaki, O.; Thompson, R. W.; Tsapatsis, M.; Vlachos, D. G. Microstructural Optimization of A Zeolite Membrane for Organic Vapor Separation. Science 2003, 300, 456-460.
54.Xomeritakis, G.; Lai, Z. P.; Tsapatsis, M. Separation of Xylene Isomer Vapors with Oriented MFI Membranes Made by Seeded Growth. Ind. Eng. Chem. Res. 2001, 40, 544-552.
55.Lai, Z. P.; Tsapatsis, M. Gas and Organic Vapor Permeation Through b-Oriented MFI Membranes. Ind. Eng. Chem. Res. 2004, 43, 3000-3007.
56.Pham, T. C.; Kim, H. S.; Yoon, K. B. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science 2011, 334, 1533-8.
57.O’Brien-Abraham, J.; Kanezashi, M.; Lin, Y. S. A Comparative Study on Permeation and Mechanical Properties of Random and Oriented MFI-Type Zeolite Membranes. Microporous Mesoporous Mater. 2007, 105, 140-148.
58.Liu, Y.; Zhang, B.; Liu, D.; Sheng, P.; Lai, Z. Fabrication and Molecular Transport Studies of Highly c-Oriented AFI Membranes. J. Membr. Sci. 2017, 528, 46-54.
59.Parvelescu, V.; Tablet, C.; Su, B. L. Zeolite Membrane with Orientation-Controlled Hexagonal Crystals from A Mesostructured Gel Supported on γ-Al2O3. Colloids Surf., A 2007, 300 , 94-98.
60.Zhou, H.; Li, Y.; Zhu, G.; Liu, J.; Lin, L.; Yang, W. Microwave Synthesis of a&b-Oriented Zeolite T Membranes and Their Application in Pervaporation-Assisted Esterification. Chin. J. Catal. 2008, 29, 592-594.
61.Kim, E.; Hong, S.; Jang, E.; Lee, J. H.; Kim, J. C.; Choi, N.; Cho, C. H.; Nam, J.; Kwak, S. K.; Yip, A. C. K.; Choi, J. An Oriented, Siliceous Deca-dodecasil 3R (DDR) Zeolite Film for Effective Carbon Capture: Insight into Its Hydrophobic Effect. J. Mater. Chem. A 2017, 5, 11246-11254.
62.Cai, R.; Sun, M.; Chen, Z.; Munoz, R.; O''Neill, C.; Beving, D. E.; Yan, Y. Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as Corrosion-Resistant Coatings. Angew. Chem. 2008, 120, 535-538.
63.Li, Z.; Johnson, M. C.; Sun, M.; Ryan, E. T.; Earl, D. J.; Maichen, W.; Martin, J. I.; Li, S.; Lew, C. M.; Wang, J.; Deem, M. W.; Davis, M. E.; Yan, Y. Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials. Angew. Chem. Int. Ed. 2006, 45, 6329-6332.
64.Boudreau, L. C.; Kuck, J. A.; Tsapatsis, M. Deposition of Oriented Zeolite A Films: In Situ and Secondary Growth. J. Membr. Sci. 1999, 152, 41-59.
65.Boudreau, L. C.; Tsapatsis, M. A Highly Oriented Thin Film of Zeolite A. Chem. Mater. 1997, 9, 1705-1709.
66.Hedlund, J.; Schoeman, B.; Sterte, J. Ultrathin Oriented Zeolite LTA Films. Chem. Commun. 1997, 1193-1194.
67.Kuzniatsova, T. A.; Mottern, M. L.; Chiu, W. V.; Kim, Y.; Dutta, P. K.; Verweij, H. Synthesis of Thin, Oriented Zeolite A Membranes on A Macroporous Support. Adv. Funct. Mater. 2008, 18, 952-958.
68.Vilaseca, M.; Mintova, S.; Valtchev, V.; Metzger, T. H.; Bein, T. Synthesis of Colloidal AlPO4-18 Crystals and Their Use for Supported Film Growth. J. Mater. Chem. 2003, 13, 1526-1528.
69.Tosheva, L.; Ng, E. P.; Mintova, S.; Holzl, M.; Metzger, T. H.; Doyle, A. M. AlPO4-18 Seed Layers and Films by Secondary Growth. Chem. Mater. 2008, 20, 5721-5726.
70.Kim, E.; Cai, W.; Baik, H.; Choi, J. Uniform Si-CHA Zeolite Layers Formed by A Selective Sonication-Assisted Deposition Method. Angew. Chem. Int. Ed. 2013, 52, 5280-5284.
71.Wang, Z. B.; Yan, Y. S. Oriented Zeolite MFI Monolayer Films on Metal Substrates by In Situ Crystallization. Microporous Mesoporous Mater. 2001, 48, 229-238.
72.Zhang, F. Z.; Fuji, M.; Takahashi, M. In Situ Growth of Continuous b-Oriented MFI Zeolite Membranes on Porous α-Alumina Substrates Precoated with A Mesoporous Silica Sublayer. Chem. Mater. 2005, 17, 1167-1173.
73.Lee, Y.; Ryu, W.; Kim, S. S.; Shul, Y.; Je, J. H.; Cho, G. Oriented Growth of TS-1 Zeolite Ultrathin Films on Poly(ethylene oxide) Monolayer Templates. Langmuir 2005, 21, 5651-5654.
74.Li, X. M.; Yan, Y. S.; Wang, Z. B. Continuity Control of b-Oriented MFI Zeolite Films by Microwave Synthesis. Ind. Eng. Chem. Res. 2010, 49, 5933-5938.
75.Yan, Y. G.; Chaudhuri, S. R.; Sarkar, A. Synthesis of Oriented Zeolite Molecular Sieve Films with Controlled Morphologies. Chem. Mater. 1996, 8, 473-479.
76.Choi, S. E.; Kim, H.; Park, Y. S.; Lee, J. S. In-Situ Thickness Controlled Growth of AlPO4-5 Films. Microporous Mesoporous Mater. 2016, 219, 155-160.
77.Zhou, M.; Liu, X.; Zhang, B.; Zhu, H. Assembly of Oriented Zeolite Monolayers and Thin Films on Polymeric Surfaces via Hydrogen Bonding. Langmuir 2008, 24, 11942-11946.
78.Bayati, B.; Babaluo, A. A.; Karimi, R. Hydrothermal Synthesis of Nanostructure NaA Zeolite: The Effect of Synthesis Parameters on Zeolite Seed Size and Crystallinity. J. Eur. Ceram. Soc. 2008, 28, 2653-2657.
79.Mohamed, R. M.; Aly, H. M.; El-Shahat, M. F.; Ibrahim, I. A. Effect of the Silica Sources on the Crystallinity of Nanosized ZSM-5 Zeolite. Microporous Mesoporous Mater. 2005, 79, 7-12.
80.Chen, Y. F.; Lee, C. Y.; Yeng, M. Y.; Chiu, H. T. The Effect of Calcination Temperature on the Crystallinity of TiO2 Nanopowders. J. Cryst. Growth 2003, 247, 363-370.
81.Sakatani, Y.; Grosso, D.; Nicole, L.; Boissière, C.; de A. A. Soler-Illia, G. J.; Sanchez, C. Optimised Photocatalytic Activity of Grid-Like Mesoporous TiO2 Films: Effect of Crystallinity, Pore Size Distribution, and Pore Accessibility. J. Mater. Chem. 2006, 16, 77-82.
82.Awala, H.; Gilson, J. P.; Retoux, R.; Boullay, P.; Goupil, J. M.; Valtchev, V.; Mintova, S. Template-Free Nanosized Faujasite-Type Zeolites. Nat. Mater. 2015, 14, 447-451.
83.Wen, Y. H.; Lin, P. C.; Hua, C. C.; Chen, S. A. Dynamic Structure Factor for Large Aggregate Clusters with Internal Motions: A Self-Consistent Light-Scattering Study on Conjugated Polymer Solutions. J. Phys. Chem. B 2011, 115, 14369-14380.
84.Guo, R. H.; Hsu, C. H.; Hua, C. C.; Chen, S. A. Colloidal Aggregate and Gel Incubated by Amorphous Conjugated Polymer in Hybrid-Solvent Medium. J. Phys. Chem. B 2015, 119, 3320-3331.
85.Siegert, A. Radiation Laboratory Report No. 475, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1943
86.Provencher, S. W. A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27, 213-227.
87.Koppel, D. E. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. J. Chem. Phys. 1972, 57, 4814-4820.
88.Dynamic light scattering with applications to chemistry, biology, and physics, Dover Publications, New York, 2000.
89.Carreon, M. L.; Li, S.; Carreon, M. A. AlPO-18 Membranes for CO2/CH4 Separation. Chem. Commun. 2012, 48, 2310-2312.
90.Jiang, Z. GIXSGUI: A MATLAB Toolbox for Grazing-Incidence X-ray Scattering Data Visualization and Reduction, and Indexing of Buried Three-Dimensional Periodic Nanostructured Films. J. of Appl. Crystallogr. 2015, 48, 917-926.
91.Follens, L. R.; Aerts, A.; Haouas, M.; Caremans, T. P.; Loppinet, B.; Goderis, B.; Vermant, J.; Taulelle, F.; Martens, J. A.; Kirschhock, C. E. A. Characterization of Nanoparticles in Diluted Clear Solutions for Silicalite-1 Zeolite Synthesis Using Liquid 29Si NMR, SAXS and DLS. Phys. Chem. Chem. Phys. 2008, 10, 5574-5583.
92.Aerts, A.; Follens, L. R.; Haouas, M.; Caremans, T. P.; Delsuc, M.; Loppinet, B.; Vermant, J.; Goderis, B.; Taulelle, F.; Martens, J. A.; Kirschhock, C. E. A. Combined NMR, SAXS, and DLS Study of Concentrated Clear Solutions Used in Silicalite-1 Zeolite Synthesis. Chem. Mater. 2007, 19, 3448-3454.
93.Schoeman, B. J.; Sterte, J.; Otterstedt, J. E. Dynamic Light Scattering Applied to the Synthesis of Colloidal Zeolite. J. Porous Mater. 1995, 1, 185-198.
94.Dimitrov, L.; Valtchev, V.; Nihtianova, D.; Kalvachev, Y. Submicrometer Zeolite A Crystals Formation: Low-Temperature Crystallization Versus Vapor Phase Gel Transformation. Cryst. Growth Des. 2011, 11, 4958-4962.
95.Kosinov, N.; Sripathi, V. G. P.; Hensen, E. J. M. Improving Separation Performance of High-Silica Zeolite Membranes by Surface Modification with Triethoxyfluorosilane. Microporous Mesoporous Mater. 2014, 194, 24-30.
96.Larlus, O.; Mintova, S.; Bein, T. Environmental Syntheses of Nanosized Zeolites with High Yield and Monomodal Particle Size Distribution. Microporous Mesoporous Mater. 2006, 96, 405-412.
97.Chang, H. L.; Shih, W. H. A General Method for the Conversion of Fly Ash into Zeolites as Ion Exchangers for Cesium. Ind. Eng. Chem. Res. 1998, 37, 71-78.
98.Abrioux, C.; Coasne, B.; Maurin, G.; Henn, F.; Jeffroy, M.; Boutin, A. Cation Behavior in Faujasite Zeolites upon Water Adsorption: A Combination of Monte Carlo and Molecular Dynamics Simulations. J. Phys. Chem. C 2009, 113, 10696-10705.
99.Shirono, K.; Endo, A.; Daiguji, H. Molecular Dynamics Study of Hydrated Faujasite-Type Zeolites. J. Phys. Chem. B 2005, 109, 3446-3453.
100.Jänchen, J.; Stach, H.; Hellwig, U. Water Sorption in Faujasite- and Chabazite Type Zeolites of Varying Lattice Composition for Heat Storage Applications. 2008, 174, 599-602.
101.Yang, A. C.; Li, Y. S.; Lam, C. H.; Chi, H. Y.; Cheng, I. C.; Kang, D. Y. Solution-Processed Ultra-Low-k Thin Films Comprising Single-Walled Aluminosilicate Nanotubes. Nanoscale 2016, 8, 17427-17432.
102.Oh, M.; Kim, Y.; Park, J. Factors Affecting the Complex Permittivity Spectrum of Soil at A Low Frequency Range of 1 kHz–10 MHz. Environ. Geol. 2006, 51, 821-833.
103.Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K. Low-k Dielectric Materials. Mater. Today 2004, 7, 34-39.
104.Izci, E.; Izci, A. Dielectric Behavior of the Catalyst Zeolite NaY. Turk. J. Chem. 2007, 31, 523-530.
105.Lopes, A. C.; Costa, C. M.; Serra, R. S. i.; Neves, I. C.; Ribelles, J. L. G.; Lanceros-Méndez, S. Dielectric Relaxation, AC Conductivity and Electric Modulus in Poly(vinylidene fluoride)/NaY Zeolite Composites. Solid State Ionics 2013, 235, 42-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top