|
[1] M. Assaad, R. Boné, H. Cardot, A new boosting algorithm for improved time-series forecasting with recurrent neural networks, Information Fusion, 9 (1), 2008, pp. 41-55. [2] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473, 2014, pp. [3] Y. Bai, Y. Li, X. Wang, J. Xie, C. Li, Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions, Atmospheric pollution research, 7 (3), 2016, pp. 557-566. [4] F. Biancofiore, M. Busilacchio, M. Verdecchia, B. Tomassetti, E. Aruffo, S. Bianco, S. Di Tommaso, C. Colangeli, G. Rosatelli, P. Di Carlo, Recursive neural network model for analysis and forecast of PM10 and PM2. 5, Atmospheric Pollution Research, 8 (4), 2017, pp. 652-659. [5] J. Chen, J. Lu, J.C. Avise, J.A. DaMassa, M.J. Kleeman, A.P. Kaduwela, Seasonal modeling of PM2. 5 in California's San Joaquin Valley, Atmospheric environment, 92, 2014, pp. 182-190. [6] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794. [7] L. Contreras, C. Ferri, Wind-sensitive interpolation of urban air pollution forecasts, Procedia Computer Science, 80, 2016, pp. 313-323. [8] E. Erdem, J. Shi, ARMA based approaches for forecasting the tuple of wind speed and direction, Applied Energy, 88 (4), 2011, pp. 1405-1414. [9] F.A. Gers, J. Schmidhuber, F. Cummins, Learning to forget: Continual prediction with LSTM, 1999, pp. [10] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation, 9 (8), 1997, pp. 1735-1780. [11] G. Hoek, R.M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, J.D. Kaufman, Long-term air pollution exposure and cardio-respiratory mortality: a review, Environmental Health, 12 (1), 2013, pp. 43. [12] H.-P. Hsieh, S.-D. Lin, Y. Zheng, Inferring air quality for station location recommendation based on urban big data, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 437-446. [13] P. Huang, J. Zhang, Y. Tang, L. Liu, Spatial and temporal distribution of PM2. 5 pollution in Xi’an City, China, International journal of environmental research and public health, 12 (6), 2015, pp. 6608-6625. [14] P. Jiang, Q. Dong, P. Li, A novel hybrid strategy for PM2. 5 concentration analysis and prediction, Journal of environmental management, 196, 2017, pp. 443-457. [15] J. Kleine Deters, R. Zalakeviciute, M. Gonzalez, Y. Rybarczyk, Modeling PM2. 5 urban pollution using machine learning and selected meteorological parameters, Journal of Electrical and Computer Engineering, 2017, 2017, pp. [16] T.N. Krishnamurti, C. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, S. Surendran, Multimodel ensemble forecasts for weather and seasonal climate, Journal of Climate, 13 (23), 2000, pp. 4196-4216. [17] A. Kurt, A.B. Oktay, Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks, Expert Systems with Applications, 37 (12), 2010, pp. 7986-7992. [18] X. Li, Y. Cheng, G. Cong, L. Chen, Discovering Pollution Sources and Propagation Patterns in Urban Area, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1863-1872. [19] X. Li, L. Peng, Y. Hu, J. Shao, T. Chi, Deep learning architecture for air quality predictions, Environmental Science and Pollution Research, 23 (22), 2016, pp. 22408-22417. [20] X. Li, L. Peng, X. Yao, S. Cui, Y. Hu, C. You, T. Chi, Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation, Environmental Pollution, 231, 2017, pp. 997-1004. [21] W. Lu, W. Wang, A.Y. Leung, S.-M. Lo, R.K. Yuen, Z. Xu, H. Fan, Air pollutant parameter forecasting using support vector machines, Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on, 2002, pp. 630-635. [22] X. Mao, T. Shen, X. Feng, Prediction of hourly ground-level PM2. 5 concentrations 3 days in advance using neural networks with satellite data in eastern China, Atmospheric Pollution Research, 8 (6), 2017, pp. 1005-1015. [23] P.G. Nieto, E.F. Combarro, J. del Coz Díaz, E. Montañés, A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study, Applied Mathematics and Computation, 219 (17), 2013, pp. 8923-8937. [24] B.T. Ong, K. Sugiura, K. Zettsu, Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2. 5, Neural Computing and Applications, 27 (6), 2016, pp. 1553-1566. [25] C.A. Pope III, R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, G.D. Thurston, Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Jama, 287 (9), 2002, pp. 1132-1141. [26] Z. Qi, T. Wang, G. Song, W. Hu, X. Li, Z.M. Zhang, Deep Air Learning: Interpolation, Prediction, and Feature Analysis of Fine-grained Air Quality, IEEE Transactions on Knowledge and Data Engineering, 2018, pp. [27] V. Reddy, P. Yedavalli, S. Mohanty, U. Nakhat, Deep Air: Forecasting Air Pollution in Beijing, China, pp. [28] H. Sak, G. Yang, B. Li, W. Li, Modeling Dependence Dynamics of Air Pollution: Pollution Risk Simulation and Prediction of PM $ _ {2.5} $ Levels, arXiv preprint arXiv:1602.05349, 2016, pp. [29] C. Song, J. He, L. Wu, T. Jin, X. Chen, R. Li, P. Ren, L. Zhang, H. Mao, Health burden attributable to ambient PM2. 5 in China, Environmental pollution, 223, 2017, pp. 575-586. [30] J. Wang, S. Ogawa, Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan, International journal of environmental research and public health, 12 (8), 2015, pp. 9089-9101. [31] Y.-F. Xing, Y.-H. Xu, M.-H. Shi, Y.-X. Lian, The impact of PM2. 5 on the human respiratory system, Journal of thoracic disease, 8 (1), 2016, pp. E69. [32] K. Yang, M.-c. Li, Z.-j. Chen, Q. Liao, Urban air pollution study based on GIS, Urban Remote Sensing Event, 2009 Joint, 2009, pp. 1-5. [33] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, E. Hovy, Hierarchical attention networks for document classification, Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016, pp. 1480-1489. [34] C. Zhang, J. Yan, C. Li, X. Rui, L. Liu, R. Bie, On estimating air pollution from photos using convolutional neural network, Proceedings of the 2016 ACM on Multimedia Conference, 2016, pp. 297-301. [35] Y. Zheng, F. Liu, H.-P. Hsieh, U-air: When urban air quality inference meets big data, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 2013, pp. 1436-1444. [36] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, T. Li, Forecasting fine-grained air quality based on big data, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 2267-2276.
|