跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李嘉興
研究生(外文):Li, Jia-Xing
論文名稱:利用飛秒激發探測光譜研究新穎光伏材料的超快動力學
論文名稱(外文):Ultrafast Dynamics of Novel Photovoltaic Materials Studied by Femtosecond Pump Probe Spectroscopy
指導教授:吳光雄吳光雄引用關係
指導教授(外文):Wu, Kaung-Hsiung
口試委員:羅志偉莊振益籔下篤史陳俊維郭守義
口試委員(外文):Luo, Chih-WeiJuang, Jenh-YihYabushita, AtsushiChen, Chun-WeiKuo, Shou-Yi
口試日期:2019-06-27
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:88
中文關鍵詞:鈣鈦礦太陽能電池激發-探測技術超快載子動力學
外文關鍵詞:perovskite solar cellpump-probe techniqueultrafast mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,具有鈣鈦礦晶體結構的金屬鹵化物半導體材料,受到全球科學家的矚目,此材料在光電轉換上取得了非同一般的表現。學界發現鈣鈦礦半導體缺陷少,載流子擴散距離長,這些特點使得鈣鈦礦半導體的發光效率也很好,可以應用於太陽能電池、發光二極體和雷射等方面。在基於有機、無機鈣鈦礦МАРЫ的光伏元件中,雖然其太陽能轉化效率比較高,但是穩定性一直很差,原因主要是使用過程中容易造成熱累積,及環境濕度、氧氣等影響,而使鈣鈦礦材料產生降解,也因此限制了其實際應用價值。因此對該材料降解成因的載子動力學研究也成了本論文的重點研究方向之一。
當元件照光後,解離的電子和電洞從吸收層到傳輸層,若具有更有效的轉移時,相應的電極將得到更高的填充因子和短路電流密度,並因此得到更高的轉換效率。鈣鈦礦電池雖然提供較長的載子擴散長度,可達到幾微米,但需要有效率的載流子傳輸。我們利用超快光譜學方法,探究改善傳輸層後,不同的時間尺度的載子動力學,使我們對該類型材料有更深入的瞭解,從而為我們創造出更新更好的太陽能電池元件提供強有力的理論和實驗支援。
In recent years, metal halide semiconductor materials with a perovskite crystal structure have attracted the attention of scientists around the world, and this material has achieved extraordinary performance in photoelectric conversion. The academic circles have found that perovskite semiconductors have few defects and long carrier diffusion distances. These characteristics make the perovskite semiconductors have good luminous efficiency and can be applied to solar cells, light-emitting diodes, and lasers. In the photovoltaic element based on organic-inorganic perovskite МАРЫ, although its solar energy conversion efficiency is relatively high, the stability has been very poor, mainly due to the heat accumulation in the process of use, and the influence of environmental humidity and oxygen. The degradation of the perovskite material also limits its practical application value. Therefore, the study of the carrier dynamics of the degradation of this material has become one of the key research directions of this thesis.
When the component is illuminated, the dissociated electrons and holes from the absorbing layer to the transport layer, if more efficient transfer, the corresponding electrode will get higher fill factor and short circuit current density, and thus get higher conversion efficiency. Although perovskite batteries provide longer carrier diffusion lengths of up to a few microns, efficient carrier transport is required. We use ultrafast spectroscopy to explore the carrier dynamics at different time scales after improving the transport layer, which gives us a deeper understanding of this type of material, thus providing us with powerful theoretical and experimental support to create newer and better solar cells.
Abstract (in Chinese) ……………………………………………………………………………………i
Abstract (in English) ……………………………………………………………………………………ii
Content …………………………………………………………………………………………………………………………iv
List of Figures ……………………………………………………………………………………………………v
Chapter 1 Introduction……………………………………………………………………………………1
1.1 Introduction to Perovskites……………………………………………………………4
1.2 Introduction to Organic Photovoltaics…………………………………9
1.3 Significance of This Work…………………………………………………………………13
Chapter 2 Principle of Ultrafast laser spectroscopy ……22
2.1 Ultrafast laser spectroscopy…………………………………………………………22
2.2 Ultrafast process in semiconductors………………………………………24
2.3 Time-resolved transient absorption spectroscopy………26
Chapter 3 Experimental Methods and Instruments……………………34
3.1 Pump-Probe Transient Absorption Spectroscopy………………34
Chapter 4 Perovskite solar cells modified by the carrier transport layer………………………………………………………………………………………………………36
4.1 UV-induced degradation in TiO2-based perovskite solar cells…………………………………………………………………………………………………………………………………36
4.2 Dual Nanocomposite Carrier Transport Layers…………………52
4.3 Electron-Selective Contact Interface Studied by Moment Analysis…………………………………………………………………………………………………………………………59
Chapter 5 Microscopic carrier dynamics of new conjugated Polymer-Based Organic Photovoltaic……………………………………………………72
5.1 Ternary Blend Photovoltaics……………………………………………………………72
5.2 Conjugated Polymer donor with Isomeric Side Chain…76
Chapter 6 Summary…………………………………………………………………………………………………85
Publication List……………………………………………………………………………………………………87
Chapter 1 Introduction
[1] Noaa.Gov (2008).
[2] B. J. Dabney, Lapislazulilight.Com (2015).
[3] Nrel.Gov (2019).
[4] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J Am Chem Soc. 131, 6050 (2009).
[5] J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen, and C. Ballif, J Phys Chem Lett. 7, 161 (2015).
[6] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nat Mater. 13, 476 (2014).
[7] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat Nanotechnol. 9, 687 (2014).
[8] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett. 15, 3692 (2015).
[9] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, Nano Lett. 15, 5635 (2015).
[10] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, Adv. Mater. 27, 7101 (2015).
[11] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Nat Commun. 6, (2015).
[12] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
[13] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
[14] M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
[15] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
[16] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
[17] H. Zhou, Q. Chen, G. Li, S. Luo, T. -b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345, 542 (2014).
[18] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat Mater. 13, 897 (2014).
[19] J. Timmer, Ars Technica (2016).
[20] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep 2, (2012).
[21] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc 134, 17396 (2012).
[22] A. P. Alivisatos, Science 271, 933 (1996).
[23] M. Bruchez Jr., Science 281, 2013 (1998).
[24] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).
[25] W. C. Chan, Science 281, 2016 (1998).
[26] D. N. Dirin, S. Dreyfuss, M. I. Bodnarchuk, G. Nedelcu, P. Papagiorgis, G. Itskos, and M. V. Kovalenko, J. Am. Chem. Soc 136, 6550 (2014).
[27] F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, ACS Nano 9, 4533 (2015).
[28] G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, and N. C. Greenham, Nano Lett. 15, 2640 (2015).
[29] Y. Tian, A. Merdasa, M. Peter, M. Abdellah, K. Zheng, C. S. Ponseca, T. Pullerits, A. Yartsev, V. Sundström, and I. G. Scheblykin, Nano Lett. 15, 1603 (2015).
[30] Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, J. Am. Chem. Soc 137, 10276 (2015).
[31] H. Deng, D. Dong, K. Qiao, L. Bu, B. Li, D. Yang, H.-E. Wang, Y. Cheng, Z. Zhao, J. Tang, and H. Song, Nanoscale 7, 4163 (2015).
[32] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, J. Am. Chem. Soc 137, 5810 (2015).
[33] E. Horváth, M. Spina, Z. Szekrényes, K. Kamarás, R. Gaal, D. Gachet, and L. Forró, Nano Lett. 14, 6761 (2014).
[34] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J.-P. Ahn, J. W. Lee, and J. K. Song, Nano Lett.15, 5191 (2015).
[35] M. Spina, M. Lehmann, B. Náfrádi, L. Bernard, E. Bonvin, R. Gaál, A. Magrez, L. Forró, and E. Horváth, Small 11, 4824 (2015).
[36] W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, J. Am. Chem. Soc 137, 12458 (2015).
[37] S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, Proc. Nat. Acad. Sci. 113, 1993 (2016).
[38] Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, and S. Jin, Nano Lett. 16, 1000 (2016).
[39] J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr, and O. F. Mohammed, J Phys Chem Lett. 6, 5027 (2015).
[40] A. Fu and P. Yang, Nat. Mater. 14, 557 (2015).
[41] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, Nat. Mater. 14, 636 (2015).
[42] J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, and Z. Hens, ACS Nano 10, 2071 (2016).
[43] S. Gonzalez-Carrero, R. E. Galian, and J. Pérez-Prieto, Opt. Lett. 24, A285 (2015).
[44] G. Rainò, G. Nedelcu, L. Protesescu, M. I. Bodnarchuk, M. V. Kovalenko, R. F. Mahrt, and T. Stöferle, ACS Nano 10, 2485 (2016).
[45] X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, Nano Lett. 16, 1415 (2016).
[46] J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv. Mat. 27, 7162 (2015).
[47] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, Adv. Mat. 27, 7101 (2015).
[48] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, J. Mater. Chem. A 3, 19688 (2015).
[49] D. Zhang, S. W. Eaton, Y. Yu, L. Dou, and P. Yang, J. Am. Chem. Soc 137, 9230 (2015).
[50] Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D’Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, and L. Manna, J. Am. Chem. Soc 138, 1010 (2016).
[51] J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. García Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, Nano Lett. 15, 6521 (2015).
[52] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L.-W. Wang, A. P. Alivisatos, and P. Yang, Science 349, 1518 (2015).
[53] Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, Adv. Mater. 28, 566 (2015).
[54] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. rev. B 56, 12685 (1997).
[55] A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
[56] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
[57] J. Wang, Science 299, 1719 (2003).
[58] G. Li, R. Zhu and Y. Yang, Nat. Photonics 6, 153 (2012).
[59] Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang. T. P. Russell and Y. Cao, Nat. Photonics 9, 174 (2015).
[60] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat Mater 4, 864 (2005).
[61] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang. Nat. Commun.4, 1446 (2013).
[62] X. T. Hao, T. Hosokai, N. Mitsuo, S. Kera, K. Mase, K. K. Okudaira and N. Ueno, Appl. Phys. Lett. 89, 182113 (2006).
[63] Burt, J. Chem. Soc.,1171 (1910).
[64] P. L. Kronick, H. Kaye, E. F. Chapman, S. B. Maintha, M. M. Labes, J. Chem. Physics. 36, 2235 (1962).
[65] D. Chapman, R. J. Warn, A. G. Fitzgerald, A. D. Yoffe, Trans. Faraday Soc. 294 (1964).
[66] H. Shirakwa, S. Ikeda, Polymer 2, 231 (1971).
[67] H. Shirakwa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem.Commum. 578 (1977).
[68] G. Li, R. Zhu and Y Yang, Nat. Photonics 6, 153 (2012).
[69] M. Hallermann, I. Kriegel, E. Da Como, J. M. Berger,E. vorl Haufr and J. Feldmann, Adr. Funct. Mater. 19, 3662 (2009).
[70] S. Westenhoff, W J. D. Beenken, R. H. Friend, N. C. Greenham, A. Yartsev and V. Sundstrom, Phys. Rev. Lett. 97, (2006).
[71] B. M. Savoie, S. Dunaisky,T. J. Marks andM. A. Ratner, Adv. Energy Mater. 5, 1400891 (2015).
[72] J. M. Szarko, B. S. Rolczynski, S. J. Lou,T. Xu, J. Strzalka,T. J. Marks, L. Yu and L. X. Chen, Adv. Funct. Mater. 24, 10 (2014).
[73] B. C. Thompson and J. M. J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).
[74] A. A. Bakulin, A. Rao, V G. Pavelyev,P. H. M. Van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Comil, D. Beljonne and R. H. Friend, Science 335, 1340 (2012).
[75] S. Gelinas, A. Rao, A. Kumar,S. L. Smith, A. W:Chin, J. Clark, T. S. Van der Poll, G. C. Bazan and R. H. Friend, Science 343, 512 (2014).
[76] B. S. Rolczynski, J. M. Szarko, H. J. Son, Y Liang, L. Yu and L. X. Chen, J. Am. Chem. Soc. 134, 4142 (2012).
[77]A. Pisoni, J. Jaćimović, O. S. Barišić, M. Spina, R. Gaál, L. Forró, and E. Horváth, J Phys Chem Lett. 5, 2488 (2014).
[78]P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, Nat Commun. 5, (2014).
[79] T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, and B.-J. Hwang, Energy Environ Sci. 9, 323 (2016).

Chapter 2 Principle of Ultrafast laser spectroscopy
[1] C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, Chem Phys Lett. 387, 176 (2004).
[2] Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, J Phys Chem. 100, 20056 (1996).
[3] L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl, and D. G. Whitten, Proceedings of the National Academy of Sciences 96, 12287 (1999).
[4] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem Rev. 97, 1515 (1997).
[5] R. A. Kaindl, M. A. Carnahan, D. S. Chemla, S. Oh, and J. N. Eckstein, Physical Review B 72, (2005).
[6] C. Bressler, C. Milne, V.-T. Pham, A. ElNahhas, R. M. van der Veen, W. Gawelda, S. Johnson, P. Beaud, D. Grolimund, M. Kaiser, C. N. Borca, G. Ingold, R. Abela, and M. Chergui, Science 323, 489 (2009).
[7] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J Appl Phys. 93, 793 (2003).
[8] C. M. Krauter, J. Möhring, T. Buckup, M. Pernpointner, and M. Motzkus, Physical Chemistry Chemical Physics 15, 17846 (2013).
[9] S. K. Sundaram and E. Mazur, Nat Mater. 1, 217 (2002).
[10] M. Schmitt, B. Dietzek, G. Hermann and J. Popp, Laser & Photonics Review 1, (2007).
[11] R. Berera, R. van Grondelle, and J. T. M. Kennis, Photosyn Res. 101, 105 (2009).
[12] C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, and R. Tauler, J. Photochem. Photobiol., C 13, 1 (2012).

Chapter 4 Perovskite solar cells modified by the carrier transport layer
[1] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
[2] N. Arora, D. M. Ibrahim, A. Hinderhofer, er, N. Pellet, F. Schreiber, Zakeeruddin, Shaik Mohammed, and M. Grätzel, Science 358, 768 (2017).
[3] J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, and T. Miyasaka, Journal of Materials Chemistry A 3, 10837 (2015).
[4] W. Zhang, Y.-C. Wang, X. Li, C. Song, L. Wan, K. Usman, and J. Fang, Advanced Science 5, 1800159 (2018).
[5] Y.-C. Chen, S.-K. Huang, S.-S. Li, Y.-Y. Tsai, C.-P. Chen, C.-W. Chen, and Y. J. Chang, ChemSusChem 11, 3225 (2018).
[6] H. Kim, K.-G. Lim, L. Tae-Woo, and E. Science, 9, 12 (2016).
[7] T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, Dubale, Amare Aregahegn, and B.-J. Hwang, Energy & Environmental Science 9, 323 (2016).
[8] G. Niu, X. Guo, and L. Wang, Journal of Materials Chemistry A 3, 8970 (2015).
[9] B. Li, Y. Li, C. Zheng, D. Gao, and W. Huang, RSC Advances 6, 38079 (2016).
[10] T. Leijtens, Eperon, Giles E, S. Pathak, eep, A. Abate, M. M. Lee, and H. J. Snaith, Nature Communications 4, 2885 (2013).
[11] Q. Liu, M.-C. Qin, W.-J. Ke, X.-L. Zheng, Z. Chen, P.-L. Qin, L.-B. Xiong, H.-W. Lei, J.-W. Wan, J. Wen, G. Yang, J.-J. Ma, Z.-Y. Zhang, and G.-J. Fang, Advanced Functional Materials 26, 6069 (2016).
[12] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, Journal of Materials Chemistry A 2, 705 (2014).
[13] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, D. Marco, and Y. Yang, Nature Nanotechnology 11, 75 (2015).
[14] T.-P. Chen, C.-W. Lin, S.-S. Li, Y.-H. Tsai, C.-Y. Wen, W. J. Lin, F.-M. Hsiao, Y.-P. Chiu, K. Tsukagoshi, M. Osada, T. Sasaki, and C.-W. Chen, Advanced Energy Materials 8, 1701722 (2018).
[15] B. Jeong, S. M. Cho, S. H. Cho, J. H. Lee, I. Hwang, S. K. Hwang, J. Cho, T. Lee, and Park, 10, 381 (2016).
[16] W. Li, W. Zhang, V. Reenen, R. J. Sutton, J. Fan, ong, Haghighirad, Amir A, M. B. Johnston, L. Wang, and H. J. Snaith, Energy & Environmental Science 9, 490 (2016).
[17] S. Tang, H. Medina, Y. Yen, C. Chen, T. Yang, K. Wei, and J. Small, 15, 1803529 (2019).
[18] W. Ouyang, F. Teng, and Fang, 28, 1707178 (2018).
[19] N. Gao and Fang, 115, 8294 (2015).
[20] C. Lan, Z. Zhou, R. Wei, and J. C, 11, 61 (2019).
[21] R. Dong, C. Lan, X. Xu, X. Liang, X. Hu, D. Li, Z. Zhou, L. Shu, S. Yip, L. Chun, and interfaces, 10, 19019 (2018).
[22] M. Osada, Y. Ebina, H. Funakubo, S. Yokoyama, T. Kiguchi, K. Takada, and T. Sasaki, Advanced Materials 18, 1023 (2006).
[23] K. Akatsuka, M. Haga, Y. Ebina, M. Osada, K. Fukuda, and T. Sasaki, ACS Nano 3, 1097 (2009).
[24] P. Piatkowski, B. Cohen, J. Ramos, Di Nunzio, Maria, M. K. Nazeeruddin, M. Grätzel, S. Ahmad, and A. Douhal, Physical Chemistry Chemical Physics 17, 14674 (2015).
[25] R. Ihly, A.-M. Dowgiallo, M. Yang, P. Schulz, N. J. Stanton, O. G. Reid, A. J. Ferguson, K. Zhu, J. J. Berry, and J. L. Blackburn, Energy & Environmental Science 9, 1439 (2016).
[26] S. Na-Phattalung, S. M. F, K. Kim, M.-H. Du, S.-H. Wei, Z. S. B, and S. Limpijumnong, Physical Review B 73, 125205 (2006).
[27] A. M. I, J. Zhang, H. Wang, and L. P. D, Renewable and Sustainable Energy Reviews 77, 131 (2017).
[28] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, and Y. Chen, Advanced Science 5, 1700387 (2018).
[29] S. Yoon, T.-J. Ha and D.-W. Kang, Nanoscale 9, 9754–9761 (2017).
[30] S. Yoon, M.-W. Ha and D.-W. Kang, J. Mater. Chem. C 5, 10143–10151 (2017).
[31] S. Ahn, W. Jang, S. Park and D. H. Wang, ACS Appl. Mater. Interfaces, 9, 15623–15630 (2017).
[32] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura and W. Yao, Nat. Nanotechnol. 9, 268 (2014).

Chapter 5 Microscopic carrier dynamics of new conjugated Polymer-Based Organic Photovoltaic
[1] C.-H. Chen, Y.-J. Lu, Y.-W. Su, Y.-C. Lin, H.-K. Lin, H.-C. Chen, H.-C. Wang, J.-X. Li, K.-H. Wu, and K.-H. Wei, Organic Electronics 71, 185 (2019).
[2] J. M. Jiang, P. Raghunath, Y. C. Lin, H. K. Lin, C. L. Ko, Y. W. Su, M. C. Lin and K. H. Wei, Polymer 79, 262–270 (2015).
[3] Y.-C. Lin, Y.-J. Lu, C.-S. Tsao, A. Saeki, J.-X. Li, C.-H. Chen, H.-C. Wang, H.-C. Chen, D. Meng, K.-H. Wu, Y. Yang, and K.-H. Wei, J Mater. Chem. A 7, 3072 (2019).
[4] W. Huang, E. Gann, N. Chandrasekaran, S. K. K. Prasad, S. Y. Chang, L. Thomsen, D. Kabra, J. M. Hodgkiss, Y. B. Cheng, Y. Yang, C. R. McNeill, Adv. Ener. Mater. 7, 1602197 (2017).
[5] M. M. Montoya, R. A. J. Janssen, Adv. Funct. Mater.27, 1605779 (2017).
[6] L. Xue, Y. Yang, J. Xu, C. Zhang, H. Bin, Z. G. Zhang, B. Qiu, X. Li, C. Sun, L. Gao, J. Yao, X. Chen, Y. Yang, M. Xiao, Y. Li, Adv. Mater. 29, 1703344 (2017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top