|
[1] Cancer Fact sheet N°297. World Health Organization. February 2014. [2] Siegel, R. L., Miller, K. D., & Jemal, A. Cancer statistics, 2019. CA: a cancer journal for clinicians, 2019, 69.1: 7-34. [3] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2018, 68.6: 394-424. [4] Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., & Bannerjee, S. K. Drug delivery systems: An updated review. International journal of pharmaceutical investigation, 2012, 2.1: 2. [5] Saravanakumar, G., Park, H., Kim, J., Park, D., Pramanick, S., Kim, D. H., & Kim, W. J. Miktoarm amphiphilic block copolymer with singlet oxygen-labile stereospecific β-aminoacrylate junction: Synthesis, self-assembly, and photodynamically triggered drug release. Biomacromolecules, 2018, 19.6: 2202-2213. [6] Bai, S., Gao, Y. E., Ma, X., Shi, X., Hou, M., Xue, Peng ,X., Kang,Y & Xu, Z. Reduction stimuli-responsive unimolecular polymeric prodrug based on amphiphilic dextran-framework for antitumor drug delivery. Carbohydrate polymers, 2018, 182: 235-244. [7] Zhang, W. J., Hong, C. Y., & Pan, C. Y. Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromolecular rapid communications, 2019, 40.2: 1800279. [8] Lehn, J M. Cryptates: the chemistry of macropolycyclic inclusion complexes. Accounts of chemical research, 1978, 11.2: 49-57. [9] Lehn, J M. Supramolekulare Chemie–Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel‐Vortrag).Angewandte Chemie, 1988, 100.1: 91-116. [10] Whitesides, G. M., Mathias, J. P., & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 1991, 254.5036: 1312-1319. [11] Oshovsky, G. V., Reinhoudt, D. N., & Verboom, W. Supramolecular Chemistry in Water. Angewandte Chemie International Edition, 2007, 46.14: 2366-2393. [12] Cram, D. J., & Cram, J. M. Host-guest chemistry. Science, 1974, 183.4127: 803-809. [13] Lehn, J M. Supramolecular chemistry. Science, 1993, 260.5115: 1762-1764. [14] Sabatier, P. A. Top-down and bottom-up approaches to implementation research: a critical analysis and suggested synthesis. Journal of public policy, 1986, 6.1: 21-48. [15] Fyfe, M. C., & Stoddart, J. F. Synthetic supramolecular chemistry. Accounts of Chemical Research, 1997, 30.10: 393-401. [16] Lehn, J M. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self‐organization. Angewandte Chemie International Edition in English, 1990, 29.11: 1304-1319. [17] Zeng, F., & Zimmerman, S. C. Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chemical reviews, 1997, 97.5: 1681-1712. [18] Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nature chemistry, 2011, 3.1: 34. [19] Pauling, L. The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca, New York, 1960. [20] Williams, D., & Westwell, M. Aspects of weak interactions. Chemical Society Reviews, 1998, 27.1: 57-64. [21] South, C. R., Burd, C., & Weck, M. Modular and dynamic functionalization of polymeric scaffolds. Accounts of chemical research, 2007, 40.1: 63-74. [22] Brunsveld, L., Folmer, B. J. B., Meijer, E. W., & Sijbesma, R. P. Supramolecular polymers. Chemical Reviews, 2001, 101.12: 4071-4098. [23] Murray TJ, Zimmerman SC. New triply hydrogen bonded complexes with highly variable stabilities. Journal of the American Chemical Society. 1992 May;114(10):4010-1. [24] Blight BA, Camara-Campos A, Djurdjevic S, Kaller M, Leigh DA, McMillan FM, McNab H, Slawin AM. AAA− DDD triple hydrogen bond complexes. Journal of the American Chemical Society. 2009 Sep 11;131(39):14116-22. [25] Bell DA, Anslyn EV. Establishing a cationic AAA-DDD hydrogen bonding complex. Tetrahedron. 1995 Jun 26;51(26):7161-72. [26] Jorgensen, W. L., & Pranata, J. Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2, 6-diaminopyridine. Journal of the American Chemical Society, 1990, 112.5: 2008-2010. [27] Pranata, J., Wierschke, S. G., & Jorgensen, W. L. OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform. Journal of the American Chemical Society, 1991, 113.8: 2810-2819. [28] Lüning, U., & Kühl, C. Heterodimers for molecular recognition by fourfold hydrogen bonds. Tetrahedron letters, 1998, 39.32: 5735-5738. [29] Zimmerman, S. C., & Corbin, P. S. Heteroaromatic modules for self-assembly using multiple hydrogen bonds. In: Molecular Self-Assembly Organic Versus Inorganic Approaches. Springer, Berlin, Heidelberg, 2000. p. 63-94. [30] Zeng H, Ickes H, Flowers RA, Gong B. Sequence specificity of hydrogen-bonded molecular duplexes. The Journal of organic chemistry. 2001 May 18;66(10):3574-83. [31] Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G., & Zerbetto, F. Extremely strong and readily accessible AAA− DDD triple hydrogen bond complexes. Journal of the American Chemical Society, 2007, 129.3: 476-477 [32] Sherrington, D. C., & Taskinen, K. A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chemical Society Reviews, 2001, 30.2: 83-93. [33] Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H , & Slawin, A. M . AAA− DDD triple hydrogen bond complexes. Journal of the American Chemical Society, 2009, 131.39: 14116-14122. [34] Schmuck, C., & Wienand, W. Self‐complementary quadruple hydrogen‐bonding motifs as a functional principle: From dimeric supramolecules to supramolecular polymers. Angewandte Chemie International Edition, 2001, 40.23: 4363-4369. [35] Jorgensen, W. L., & Pranata, J. Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2, 6-diaminopyridine. Journal of the American Chemical Society, 1990, 112.5: 2008-2010. [36] Sijbesma, R. P., & Meijer, E. W. Quadruple hydrogen bonded systems. Chemical Communications, 2003, 1: 5-16. [37] Söntjens, S. H., Sijbesma, R. P., van Genderen, M. H., & Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4 [1 H]-pyrimidinone dimers. Journal of the American Chemical Society, 2000, 122.31: 7487-7493. [38] Mann, J. L., Anthony, C. Y., Agmon, G., & Appel, E. A. Supramolecular polymeric biomaterials. Biomaterials science, 2018, 6.1: 10-37. [39] Fox, J. D., & Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules, 2009, 42.18: 6823-6835. [40] Kolomiets, E., & Lehn, J. M. Double dynamers: molecular and supramolecular double dynamic polymers. Chemical Communications, 2005, 12: 1519-1521. [41] Binder, W. H., Bernstorff, S., Kluger, C., Petraru, L., & Kunz, M. J. Tunable materials from hydrogen‐bonded pseudo block copolymers. Advanced materials, 2005, 17.23: 2824-2828. [42] Corbin, P. S., & Zimmerman, S. C. Complexation-induced unfolding of heterocyclic ureas: A hydrogen-bonded, sheetlike heterodimer. Journal of the American Chemical Society, 2000, 122.15: 3779-3780. [43] Cheng, C. C., Lin, I. H., Yen, Y. C., Chu, C. W., Ko, F. H., Wang, X., & Chang, F. C. New self-assembled supramolecular polymers formed by self-complementary sextuple hydrogen bond motifs. Rsc Advances, 2012, 2.26: 9952-9957. [44] Cheng, C. C., Lee, D. J., Liao, Z. S., & Huang, J. J. Stimuli-responsive single-chain polymeric nanoparticles towards the development of efficient drug delivery systems. Polymer Chemistry, 2016, 7.40: 6164-6169. [45] Liu, Y., Wang, W., Yang, J., Zhou, C., & Sun, J. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. asian journal of pharmaceutical sciences, 2013, 8.3: 159-167. [46] Gebeyehu, B. T., Huang, S. Y., Lee, A. W., Chen, J. K., Lai, J. Y., Lee, D. J., & Cheng, C. C. Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules, 2018, 51.3: 1189-1197. [47] Deepagan, V. G., Kwon, S., You, D. G., Um, W., Ko, H., Lee, H., Jo , D. G. , Young M. , K., & Park, J. H. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials, 2016, 103: 56-66. [48] Tian, H., Tang, Z., Zhuang, X., Chen, X., & Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 2012, 37.2: 237-280. [49] Wei, H., Cheng, S. X., Zhang, X. Z., & Zhuo, R. X. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009, 34.9: 893-910. [50] Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal transduction and targeted therapy, 2018, 3.1: 7. [51] Monteiro, L. O., Fernandes, R. S., Oda, C. M., Lopes, S. C., Townsend, D. M., Cardoso, V. N., Oliveira, M. C., Leite, E. A., Rubello, D., & de Barros, A. L. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomedicine & Pharmacotherapy, 2018, 97: 489-495. [52] Li, R., Wu, R. A., Zhao, L., Wu, M., Yang, L., & Zou, H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS nano, 2010, 4.3: 1399-1408. [53] Senapati, S., Thakur, R., Verma, S. P., Duggal, S., Mishra, D. P., Das, P., Shripathi, T., Kumar, M., Rana, D., & Maiti, P. Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. J. Control. Release 224, 186–198 (2016). [54] Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., & Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011). [55] Liu, J., Bu, W., Pan, L., & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. Engl. 52, 4375–4379 (2013). [56] Huang, I. P., Sun, S. P., Cheng, S. H., Lee, C. H., Wu, C. Y., Yang, C. S., Lo, L. W., & Lai, Y. K. Enhanced chemotherapy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Mol. Cancer Ther. 10, 761–769 (2011). [57] Weiss, G. J., Chao, J., Neidhart, J. D., Ramanathan, R. K., Bassett, D., Neidhart, J. A., Choi, C. H., Chow, H., Chung, V., Forman, S. J., Garmey, E., Hwang, J., Kalinoski, D. L.,Koczywas, M., Longmate, J., Melton, R. J., Morgan, R., Oliver, J., Peterkin, J. J., Ryan, J. L.,Schluep, T., Synold, T. W., Twardowski, P., Davis, M., & Yen, Y., First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest. New. Drugs 31, 986–1000 (2013). [58] Von Hoff, D. D., Mita, M. M., Ramanathan, R. K., Weiss, G. J., Mita, A. C., LoRusso, P. M., Burris III, H. A., Hart, L.L., Low, S. C., Parsons, D. M., Zale, S. E., Summa, J. M., Youssoufian, H., & Sachdev, J. C., Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 22, 3157–3163 (2016). [59] Lao, J., Madani, J., Puértolas, T., Álvarez, M., Hernández, A., Pazo-Cid, R., & Antón Torres, A. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J. Drug Deliv. 2013, 1–12 (2013). [60] Zhao, D., Zhao, X., Zu, Y., Li, J., Zhang, Y., Jiang, R., & Zhang, Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int. J. Nanomed. 5, 669–677 (2010). [61] Nguyen, H., Nguyen, N. H., Tran, N. Q., & Nguyen, C. K. Improved method for preparing cisplatin-dendrimer nanocomplex and its behavior against NCI-H460 lung cancer cell. J. Nanosci. Nanotechnol. 15, 4106–4110 (2015). [62] Van Furth, R., Cohn, Z. A., Hirsch, J. G., Humphrey, J. H., Spector, W. G., & Langevoort, H. L. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bulletin of the World Health Organization, 1972, 46.6: 845. [63] O'Reilly, R. K., Hawker, C. J., & Wooley, K. L. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews, 2006, 35.11: 1068-1083. [64] Lu, J., Jia, H., Guo, L., Zhang, G., Cao, Y., Yan, H., & Liu, K. Zwitterionic polymeric micelles that undergo a pH-triggered positive charge for enhanced cellular uptake. European Polymer Journal, 2015, 66: 376-385. [65] Li, R., & Xie, Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. Journal of Controlled Release, 2017, 251: 49-67. [66] Zhong, L., Xu, L., Liu, Y., Li, Q., Zhao, D., Li, Z., Zhang, H., Zhang, H.,Kan, Q., Wang, Y., Sun, J. & He, Z. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharmaceutica Sinica B, 2019, 9.2: 397-409. [67] Feldman, K. E., Kade, M. J., Meijer, E. W., Hawker, C. J., & Kramer, E. J. Phase behavior of complementary multiply hydrogen bonded end-functional polymer blends. Macromolecules, 2010, 43.11: 5121-5127. [68] Roy, N., Bruchmann, B., & Lehn, J. M. DYNAMERS: dynamic polymers as self-healing materials. Chemical Society Reviews, 2015, 44.11: 3786-3807. [69] Chen, S., & Binder, W. H. Dynamic ordering and phase segregation in hydrogen-bonded polymers. Accounts of chemical research, 2016, 49.7: 1409-1420. [70] Gordon, S. The role of the macrophage in immune regulation. Research in immunology, 1998, 149.7-8: 685-688. [71] Matsumura, Y., & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986, 46.12 Part 1: 6387-6392. [72] Maeda, H. A. Y. M., & Matsumura, Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Critical reviews in therapeutic drug carrier systems, 1989, 6.3: 193-210. [73] Maeda, H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Advanced drug delivery reviews, 1991, 6.2: 181-202. [74] Greish, K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet?. Drug Discovery Today: Technologies, 2012, 9.2: e161-e166. [75] Gisselfält, K., Edberg, B., & Flodin, P. Synthesis and properties of degradable poly (urethane urea) s to be used for ligament reconstructions. Biomacromolecules, 2002, 3.5: 951-958. [76] Zhang, C., Wen, X., Vyavahare, N. R., & Boland, T. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials, 2008, 29.28: 3781-3791. [77] Adhikari, R., Gunatillake, P. A., Griffiths, I., Tatai, L., Wickramaratna, M., Houshyar, S., Moore, T., Mayadunne, R. T. M., Field, J., McGee, M., & Carbone, T. Biodegradable injectable polyurethanes: synthesis and evaluation for orthopaedic applications. Biomaterials, 2008, 29.28: 3762-3770. [78] Jeong, B., Bae, Y. H., Lee, D. S., & Kim, S. W. Biodegradable block copolymers as injectable drug-delivery systems. Nature, 1997, 388.6645: 860. [79] Mequanint, K., Patel, A., & Bezuidenhout, D. Synthesis, swelling behavior, and biocompatibility of novel physically cross-linked polyurethane-b lock-poly (glycerol methacrylate) hydrogels. Biomacromolecules, 2006, 7.3: 883-891. [80] Kwon, G., Suwa, S., Yokoyama, M., Okano, T., Sakurai, Y., & Kataoka, K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. Journal of Controlled Release, 1994, 29.1-2: 17-23. [81] Knight, P. T., Lee, K. M., Qin, H., & Mather, P. T. Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane. Biomacromolecules, 2008, 9.9: 2458-2467. [82] French, A. C., Thompson, A. L., & Davis, B. G. High‐Purity Discrete PEG‐Oligomer Crystals Allow Structural Insight. Angewandte Chemie International Edition, 2009, 48.7: 1248-1252. [83] Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nature reviews cancer, 2005, 5.3: 161. [84] Wiradharma, N., Zhang, Y., Venkataraman, S., Hedrick, J. L., & Yang, Y. Y. Self-assembled polymer nanostructures for delivery of anticancer therapeutics, Nano Today 4 (2009) 302–317. [85] Bae, Y., & Kataoka, K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers, Adv. Drug Deliv. Rev. 61. 2009 768–784. [86] Arcamone, F. Doxorubicin: anticancer antibiotics. Elsevier, 2012. [87] Singal, P. K., & Iliskovic, N. Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 1998, 339.13: 900-905. [88] Radbruch, A. Immunofluorescence: basic considerations. In: Flow cytometry and cell sorting. Springer, Berlin, Heidelberg, 2000. p. 38-52. [89] Binder, W. H., & Sachsenhofer, R. Polymersome/Silica Capsules by ‘Click’‐Chemistry. Macromolecular Rapid Communications, 2008, 29.12‐13: 1097-1103. [90] Cheng, C. C., Yen, Y. C., & Chang, F. C. Hierarchical structures formed from self-complementary sextuple hydrogen-bonding arrays. RSC Advances, 2011, 1.7: 1190-1194. [91] Bobade, S. L., Malmgren, T., & Baskaran, D. Micellar-cluster association of ureidopyrimidone functionalized monochelic polybutadiene. Polymer Chemistry, 2014, 5.3: 910-920. [92] Owen, S. C., Chan, D. P., & Shoichet, M. S. Polymeric micelle stability. Nano today, 2012, 7.1: 53-65. [93] Chen, W., Meng, F., Cheng, R., Deng, C., Feijen, J., & Zhong, Z. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. Journal of controlled release, 2015, 210: 125-133.
|