參考文獻
中文資料
鄭凱峰(民 92)。小樣本高維度資料中二階段分類法之效能評估-以基因微陣列資料癌症分類為例(碩士論文)。國立成功大學,台南市。林恩汝(民95)。應用二階段分類法提升Least square-support vector machine(LS-SVM)技術之分類正確率(碩士論文)。國立勤益科技大學,台中市。程中慧(民94)。無歸納偏置影響因素的基因選取方法之研究(碩士論文)。國立成功大學,台南市。林建安(民99)。應用階層式分類法於腦部MR影像組織分割之研究(碩士論文)。國立臺灣海洋大學,基隆市。吳國海(民91)。中醫藥基因體研究與微陣列及基因表現分析技術。國科會基因體醫學國家型科技計畫微陣列及基因體表現分析核心設備實驗室。.
陳順宇 (民89),多變量分析,華泰書局二版。
陳健尉 (民89),基因微陣列顯色分析法之簡介及其應用: 二十一世紀基因分析的利器,生物醫學報導,第二期。蔡政安(民97)。微陣列資料分析。中國醫藥大學生物統計中心生統e報第十八期。
陳健尉:基因微陣列分析系統,國立台灣大學醫院九十一年度暑期「醫藥基因生物技術研究班」 2002; 7:62.
英文資料
Abeel, T., Helleputte, T., Peer Y. V., Dupont, P., & Saeys Y. (2010). Robust biomarker identification
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P. (1998). Automatic subspace clustering of high dimensional data for data mining applications. Proc. ACM SIGMOD international conference on Management of Data, 94-105.
D. Jiang, C. Tang, A. Zhang. (2004). Cluster Analysis for Gene Expression Data: A Survey. Knowledge and Data Engineering, (16)11, 1370 - 1386.
Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the classification of tumor using gene expression data. Journal of the American Statistical Association, 97, 77-87.
Dudoit, S., Yang, YH., Callow, MJ., & Speed, TP. (2002). Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments. Statistica Sinica, 12(1), 111–139.
Dun J.-F. and Huang C.-L., (2007). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 22, 1381–1391.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
Guyon, I., Elisseeff A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
Guyon, I., Weston, J., Barnhill., S. (2002) Gene selection for cancer classification using support vector machines, Machine learning. 46 389-422.
Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), 389-422.
Huang, C. L. and Wang, C. J.(2006). A Ga-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications, 31, 231-240.
Kehoe, P. G., Russ, C., McIlroy, S., et al (1999) Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genetics, 21, 71–72.
Li, L., Weinberg, CR., Darden, TA., & Pedersen, LG. (2001). Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 17(12), 1131-1142.
Liu, R.-S., Lina, T.-C., Chenc, C.-Y., Chaoa, Y.-T, & Chena, S.-Y. (2006). Pattern classification in DNA microarray data of multiple tumor types. Pattern Recognition. 39, 2426-2438.
Lockhart, B. E., Menke, J., Dahal, G. & Olszewski, N. E. (2000). Characterization and genomic analysis of tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. J Gen Virol, 81(6), 1579–1585.
Madeira, S.C., and Oliveria, A.L., (2004). Biclustering Algorithms for Biological Data Analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, l(1), 24-45.
Marill, T., and Green , D. (1963). On the effectiveness of receptors in recognition systems. IEEE Trans Information Theory, 9(1),11-17.
Naghieh E, and Peng Y, Microarray Gene Expression Data Mining: Clustering Analysis Review. Department of Computing
Peng, H., Long, F., Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238.
Peng, S. and Xu, Q. And Ling, X. B. and Peng, X. And Du, W. and Chen L. (2003). Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. Federation of European Biochemical Societies, 555, 358-362.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
Quinlan, J.R. (1979). Discovering rules by induction from large collections of examples. In D. Michie (Ed.), Expert systems in the micro electronic age, 168-201. Edinburgh: Edinburgh University Press.
Quinlan, J.R. (1993). C4.5: Programs for machine learning. California CA: Morgan Kaufmann.
Richmond, BG., & Strait, DS. (2000). Evidence that humans evolved from a knuckle-walking ancestor. Nature 404, 382–385.
Whitney, W. (1971). A direct method of nonparametric measurement selection. IEEE Trans Computers, 20(9), 1100–1103.
Zhang, X. D., Ferrer, M., Espeseth, A. S., Marine, S. D., Stec, E. M., Crackower, M. A., Strulovici, B. (2007). The use of strictly standardized mean difference for hit selection in primary RNA interference high-throughput screening experiments. Journal of biomolecular screening, 12(4), 497-509.
Zhang, X.D., Lacson, R., Yang, R., Marine, S.D., McCamphell, A., Toolan, D.M., Ferrer, M. (2010). The Use of SSMD-Based False Discovery and False Nondiscovery Rates in Genome-Scale RNAi Screens. Journal of biomolecular screening, 15(9), 1123-113.
Zhao, L., Zaki, M.J., (2005) . Tricluster: An Effective algorithm for Mining coherent clusters in 3D Microarray Data. Data Mining for Biomedical Applications, 3916,48-59.