跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.137) 您好!臺灣時間:2026/01/06 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李怡青
研究生(外文):Yi-Ching Li
論文名稱:白鞭珊瑚(Junceella fragilis)卵母細胞低溫傷害超顯微結構之研究
論文名稱(外文):Ultrastructural observations of chilling injury in gorgonian (Junceella fragilis) oocytes
指導教授:林家興林家興引用關係
指導教授(外文):Jia-Sing Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物科技研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:138
中文關鍵詞:珊瑚低溫傷害超微結構低溫冷凍保存抗凍劑
外文關鍵詞:coralchilling injurycryopreservationultrasturcturecryoprotectant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:2
本研究的目的是利用穿透式電子顯微鏡探討低溫保存期間,白鞭珊瑚(Junceella fragilis) 卵母細胞之低溫傷害及添加抗凍劑產生之影響。本實驗以穿透式電子顯微鏡觀察初期及後期卵母細胞之超微結構,發現卵母細胞最外層為卵黃膜,微絨毛呈管狀,作為卵母細胞發育時的保護機制,卵黃膜外部含有共生渦鞭毛藻,內部主要包含三種卵黃物質:脂質體、卵黃體、皮層小泡。脂質體與卵黃體作為營養物質儲存供卵母細胞發育時的來源,且卵黃顆粒物質可能由小濾泡堆積及大型濾泡轉變而成。卵母細胞內含大量不同種類之卵黃物質,在本實驗亦發現不同大小之濾泡內包含一些濃縮及顆粒物質,其卵黃物質合成為複雜且均一物質。粒線體、內質網、高爾基氏體等胞器皆參與生合成過程,此外,在低溫保存試驗中,本研究添加不同濃度之甲醇作為抗凍劑,於低溫下5℃及-5℃分別以不同暴露時間0、12、24、48、96小時處理,研究結果發現,無添加抗凍劑處理之對照組,脂質體瓦解並融合,且於低溫時,脂質體與卵黃顆粒表面有不規則液泡產生,於5℃時,2M甲醇處理組對於初期卵母細胞之卵黃膜結構傷害較1M甲醇處理嚴重,並觀察到後期卵母細胞對於抗凍劑耐受性較高。本研究的目的在了解Junceella fragilis卵母細胞之超微結構,並探討在低溫情況下,卵母細胞對於抗凍劑與暴露時間之間交互作用的影響。本研究結果也可以將低溫保存應用於其他珊瑚物種之卵母細胞,以利其冷凍保存之相關研究,透過低溫保存技術可將遺傳物質永久保存,建立基因資料庫,以維持物種多樣性。
The aim of this study was to observe the effects of chilling injury sustained by the early and late stage oocytes of gorgonian coral (Junceella juncea) using transmission electron microscope (TEM). The outermost layer of the oocytes had vitelline coat and microvilli-like tubular serve as a protective mechanism during oocyte development. Within the oocytes, there existed three types of yolk material: lipid granula, yolk body and cortical alveoli; Both lipid and yolk are the nutrient storage during oocyte development. These yolk materials could have been converted from the small vesicles or distended vesicles as the particulate matters within the vesicles had similar composition as the yolk body found in the oocytes. Organelles such as mitochondria, endoplasmic reticulum, Golgi were found to be involved in these biosynthesis processes during oocyte development. For the chilling experiments, when exposed to 5°C and -5°C for 0, 12, 24, 48, 96 h without cryoprotectant, lipid in the oocytes merged and coalescent, and the oocyte surface appeared rough and uneven. At temperature 5℃, it showed that vitelline coat of early stage oocytes cryopreserved with 2M methanol suffered more damage compared to late stage oocycte. Thus, late stage oocytes are more tolerant towards cryoinjuries. The results of present study could be applied to cryopreservation on the oocytes of Junceella juncea and other coral species, ensuring a more complete cryopreservation technique.
摘要……………………………………………………………………………………I
Abstract.……………………………………………………………………………...II
目錄………………………………………………………………………………….III
圖目錄………………………………………………………………………………...V
表目錄………………………………………………………………………………...X
第一章 前言..…………………………………………………………………………1
1-1冷凍保存技術……………………………………………………………3
1-2影響冷凍保存因子………………………………………………………5
1-3冷凍保護劑 (Cryoprotectant)….………………………………………..7
1-4抗凍保護劑之影響……………………………………………………..12
1-5 抗凍劑之選擇與應用…..……………………………………………...12
1-6冷凍保存之傷害………………………………………………………..12
1.6.1低溫傷害 (Chilling injury)……………………………………….13
1.6.2冷凍傷害 (Freezing injury)………….…………………………..14
1-7低溫生物學應用 (Application of cryobiology)..………..……………..17
1.7.1微生物及細菌之生物工程…...…………………………………..17
1.7.2畜牧業及水產養殖...……………………………………………..18
1.7.3低溫保存瀕臨絕種之動植物...…………………………………..19
1-8 超微結構分析與應用…...……………………………………………..19
第二章 實驗材料與方法…..………………………………………………………..23
2.1採樣地點………………………………………………………………..23
2.2 培育飼養...……………………………………………………………..23
2.3 種類鑑定...……………………………………………………………..24
2.4 卵母細胞收集...………………………………………………………..25
2.5低溫 (chilling) 下抗凍劑對卵母細胞之影響….……………………..26
2.6掃描式電子顯微鏡 Scanning electron microscope (SEM)…..………..28
2.7穿透式電子顯微鏡 Transmission electron microscope (TEM)………..29
第三章 觀察初期及後期卵母細胞之超微結構 …………………………………..33
3.1結果……………………………………………………………………..33
3.1.1珊瑚卵母細胞之生物學及形態特徵…...………………………..33
3.1.2初期卵母細胞...…………………………………………………..33
3.1.3後期卵母細胞...…………………………………………………..34
3.2 討論.......………………………………………………………………..35
第四章 觀察低溫對初期及後期卵母細胞超微結構之影響…..…………………..55
4.1結果……………………………………………………………………..55
4.1.1利用TEM觀察低溫對於初期卵母細胞超微結構之影響….…..55
4.1.2利用TEM觀察低溫對於後期卵母細胞超微結構之影響….…..57
4.2討論……………………………………………………………………..59
4.3結論……………………………………………………………………..63
參考文獻……………………………………………………………………………113
附錄…………………………………………………………………………………133

表目錄

表1-1 卵母細胞與胚胎之冷凍方法 ………………………………………………4
表1-2 一般常見的冷凍保護劑 …………………………………………………..10
表1-3 各種海洋無脊椎生物卵母細胞之冷凍保護劑比較……………………..11
表1-4 各種海洋無脊椎生物幼蟲之冷凍保護劑比較…………………………..11
表1-5 低溫傷害及冷凍傷害之比較 ……………………………………………..16
表1.6 不同珊瑚卵母細胞之胞器比較…………………………………………..42

圖目錄

圖1-1 細胞在冷凍保存過程其型態變化示意圖…………………………………6
圖1-2 冷凍保護劑與冰晶形成之示意圖…………………………………………8
圖2-1 採集Junceella fragilis培育飼養...………………………………………..24
圖2-2 Junceella fragilis & Junceella juncea之骨針形態…...…………………..25
圖2-3 利用解剖/光學顯微鏡觀察Junceella fragilis表面切片….……………..26
圖2-4 低溫實驗條件之示意圖…………………………………………………..27
圖2-5 利用SEM觀察Junceella fragilis卵母細胞外觀………………………..29
圖3-1 Junceella fragilis初期卵母細胞之細胞核區……………………………..43
圖3-2 Junceella fragilis卵母細胞脂質體之超微結構…………………………..44
圖3-3 Junceella fragilis卵母細胞內各種卵黃體之超微結構…………………..45圖3-4 Junceella fragilis卵母細胞粒線體之超微結構…………………………..46
圖3-5 Junceella fragilis卵母細胞內質網之超微結構…………………………..47
圖3-6 Junceella fragilis卵母細胞內高爾基氏體之超微結構…………………..48
圖3-7 Junceella fragilis卵母細胞之不同大小及電子密度之濾泡……………..49
圖3-8 Junceella fragilis卵母細胞內卵黃小板之超微結構....…………………..50
圖3-9 Junceella fragilis卵母細胞吞噬細胞之超微結構………………………..51
圖3-10 Junceella fragilis卵母細胞細胞膜區域之超微結構……………………..52
圖3-11 Junceella fragilis卵母細胞外部共生渦鞭毛藻之超微結構……………..53
圖4-1 利用TEM觀察Junceella fragilis初期卵母細胞對照組之超微結構…....65
圖4-2 利用TEM觀察Junceella fragilis初期卵母細胞在室溫26℃下,曝露12小時,其超微結構之變化……….……………………………………… 66
圖4-2-1 利用TEM觀察Junceella fragilis初期卵母細胞以室溫26℃,曝露於不同時間點之比較,其超微結構之變化 …………………………………..67
圖4-3 利用TEM觀察Junceella fragilis初期卵母細胞以5℃對照組,曝露於不同時間,其卵母細胞超微結構之變化 …………………………………..68
圖4-3-1 利用TEM觀察Junceella fragilis初期卵母細胞在5℃對照組,曝露於不同時間,其卵母細胞超微結構之變化 …………………………………..69
圖4-3-2 利用TEM觀察Junceella fragilis初期卵母細胞在5℃對照組,曝露於不同時間,其卵母細胞大型液泡之超微結構變化 ………………………..70
圖4-4 利用TEM觀察Junceella fragilis初期卵母細胞在-5℃對照組,曝露於不同時間,其卵母細胞之超微結構變化 …………………………………..71
圖4-4-1 利用TEM觀察Junceella fragilis初期卵母細胞在-5℃對照組,曝露於不同時間,其卵母細胞卵黃小板(vp)之超微結構變化 …………………..72
圖4-4-2 利用TEM觀察Junceella fragilis初期卵母細胞以-5℃對照組,曝露24小時,其卵母細胞之超微結構變化……….…………………………… 73
圖4-4-3 用TEM觀察Junceella fragilis初期卵母細胞以-5℃對照組,曝露於48小時,其卵母細胞之超微結構變化……….…………………………… 74
圖4-5 利用TEM觀察Junceella fragilis初期卵母細胞以5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………..75
圖4-5-1 利用TEM觀察Junceella fragilis初期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………..76
圖4-5-2 利用TEM觀察Junceella fragilis初期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之脂質體(lg)超微結構變化…..77
圖4-5-3 利用TEM觀察Junceella fragilis初期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞超微結構之變化 ……………..78
圖4-5-4 利用TEM觀察Junceella fragilis初期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之粒線體(m)超微結構變化…..79
圖4-5-5 利用TEM觀察Junceella fragilis初期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之粒線體(m)超微結構變化….80
圖4-5-6 利用TEM觀察Junceella fragilis初期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之液泡(v)超微結構變化 …..81
圖4-6 利用TEM觀察Junceella fragilis初期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………..82
圖4-6-1 利用TEM觀察Junceella fragilis初期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之脂質體(lg)超微結構變化…..83
圖4-6-2 利用TEM觀察Junceella fragilis初期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之卵黃小板(vp)超微結構變化.84
圖4-6-3 利用TEM觀察Junceella fragilis初期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞超微結構之變化 ……………..85
圖4-7 利用TEM觀察Junceella fragilis後期卵母細胞對照組之超微結構 …86
圖4-8 利用TEM觀察Junceella fragilis後期卵母細胞以室溫26℃,曝露於不同時間點之比較,其卵黃膜(vc)超微結構之變化………………………..87
圖4-8-1 利用TEM觀察Junceella fragilis後期卵母細胞在室溫26℃下,曝露於不同時間點之比較,其脂質體(lg)超微結構之變化……………………..88
圖4-8-2 利用TEM觀察Junceella fragilis後期卵母細胞在室溫26℃下,曝露於不同時間點之比較,其共生藻(sa)超微結構之變化……………………..89
圖4-9 利用TEM觀察Junceella fragilis後期卵母細胞在5℃對照組,曝露於不同時間,其卵母細胞超微結構之變化 …………………………………..90
圖4-9-1 利用TEM觀察Junceella fragilis後期卵母細胞在5℃對照組,曝露於不同時間,其卵母細胞脂質體(lg)超微結構變化…………………………..91
圖4-9-2 利用TEM觀察Junceella fragilis後期卵母細胞在5℃對照組,曝露於不同時間,其卵母細胞超微結構之變化 …………………………………..92
圖4-9-3 利用TEM觀察Junceella fragilis後期卵母細胞在5℃對照組,曝露於不同時間,其卵母細胞超微結構之變化…………………………………..93
圖4-10 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃對照組,曝露於不同時間,其卵母細胞細胞膜之超微結構變化….………………………..94
圖4-10-1 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃對照組,曝露於不同時間,其卵母細胞之粒線體(m)超微結構變…………………………..95
圖4-10-2 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃對照組,曝露於24小時,其卵母細胞之超微結構變化…………………………………..96
圖4-10-3 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃對照組,曝露於48小時,其卵母細胞之超微結構變….…………………………………..97
圖4-11 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞超微結構之變化 ……………..98
圖4-11-1 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞超微結構之變化 ……………..99
圖4-11-2 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之脂質體(lg)超微結構變化…100
圖4-11-3 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之脂質體(lg)超微結構變化…101
圖4-11-4 利用TEM觀察Junceella fragilis後期卵母細胞以5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之大型液泡(lv)超微結構變化102
圖4-11-5 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……..….….103
圖4-11-6 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………104
圖4-11-7 利用TEM觀察Junceella fragilis後期卵母細胞在5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之粒線體(m)超微結構變化…105
圖4-12 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………106
圖4-12-1 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之脂質體(lg)超微結構變……107
圖4-12-2 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之卵黃小板(vp)超微結構變化…………………………………………………………………………108
圖4-12-3 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………109
圖4-12-4 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之超微結構變化 ……………110
圖4-12-5 利用TEM觀察Junceella fragilis後期卵母細胞在-5℃曝露於不同時間,經不同濃度抗凍劑之處理,其卵母細胞之粒線體(m)超微結構變化…111

AbdelHafez, F. F., Desai, N., Abou-Setta, A. M., Falcone, T., Goldfarb, J. (2010) Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Elsevier, 20(2):209-222.

Adiyodi, R. G., Subramoniam, T. (1983) Arthropoda–Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, Vol 1. Oogenesis, oviposition and oosorption. Wiley, Chichester, pp: 443-495.

Ahammad, M. M., Bhattacharyya, D., Jana, B. B. (2002) The hatching of common carp (Cyprinus carpio L.) embryos in response to exposure to different concentrations of cryoprotectant at low temperatures. Cryobiology, 44:114-121.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D. (1989) Molecular Biology of the Cell (second edition).Garland Publishing, New York London, pp:1218.

Albertini, D. F., Eppig, J. J. (1995) Unusual cytoskeletal and chromatin configurations in mouse oocytes that are atypical in meiotic progression. Developmental genetics, 16(1):13-19.

Al-Fageeh, M. B., Marchant, R. J., Carden, M. J., Smales, C. M. (2006) The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnology and Bioengineering, 93(5):829-835.

Alves, P. M., Fonseca, L. L., Peixoto, C. C., Ameide, A. C., Carrondo, M. J. (2000) NMR studies on energy metabolism of immobilized primary neurons and astrocytes during hypoxia, ischemia and hypoglycemia. NMR in Biomedicine, 13(8):438-448.

Amir, A., Zvi, R. (2008) Do chilling injury and heat stress share the same mechanism of injury in oocytes? Molecular and Cellular Endocrinology, 282:150-152.

Amor, M. J., Ribes, E. (1995) Morfología de la ovotestis de Dendrodoris grandiflora (Mollusca Nudibranchia). Aspectos ultraestructurales de la oogénesis. Actas del VI Congreso de la Sociedad Española de Biología Celular, pp:182.

Amor, M. J., Ramón, M., Durfort, M. (2004) Ultrastructural studies of oogenesis in Bolinus brandaris (Gastropoda: Muricidae). Scientia Marina, 68(3):343-353.

Anderson, E. (1974) Comparative aspects of the ultrastructure of the female gamete. Intern. Reverend. Cytology, 4:1-70.

Angelier, N., Moreau, N. A., N’Da, E., Lautredou, N. F. (1989) Cold-induced changes in amphibian oocytes. Experimental cell research, 183(2):508-513.

Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., Hoegh-Guldberg, O. (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. National Acad Sciences, 45:17442-17446.

Apisawetakan, S., Linthong, V., Wanichanon, C., Panasophonkul, S., Meepool, A., Kruatrachue, M., Upatham, E. S., Pumthong, T., Sobhon, P. (2001) Ultrastructure of female germ cells in Haliotis asinina Linnaeus. Invertebrate Reproduction & Development, 39:67-79.

Arav, A., Pearl, M., Zeron, Y. (2000) Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? CryoLetters, 21(3):179-186.

Arav, A., Zeron, Y., Leslie, S. B., Behboodi, E., Anderson, G. B., Crowe, J. H. (1996) Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology, 33(6):589-599.

Azevedo, C., Castilho, F., Coimbra, A. (1984) Fine structure and cytochemistry of the oocyte nucleolus in the mollusk Helcion pellucidus (Prosobranchia). Journal of ultrastructure research, 98(1):1-11.

Baker, A. C. (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics. 34:661-689.

Barnes, R. B. (1987) Invertebrate zoology. Saunders College Pub-lishing, Philadelphia, pp:134-135.

Bayer, F. M. (1973) Colonial organization in octocorals. In: Brodman RS, Cheetman AH, Oliver WA Jr (eds) Animal colonies de- velopment and function through time. Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania, pp: 69-93.

Bazzolia, N., Godinhoa, H. P. (1994) Cortical alveoli in oocytes of freshwater neotropical teleost fish. Bolletino di zoologia, 61(4):301-308.

Beazley, L. I., Kenchington, E. L. (2012) Reproductive biology of the deep-water coral Acanella arbuscula (Phylum Cnidaria: Class Anthozoa: Order Alcyonacea), northwest Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 68:92-104.

Bellas, J., Paredes, E. (2009) Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment. Cryobiology, 62:174-180.

Bellwood, D. R., Hughes, T. P., Folke, C., Nyström, M. (2004) Confronting the coral reef crisis. Nature, 429(6994):827-833.

Benayahu, Y., Berner, T., Achituv, Y. (1989) Development of planulae within a mesogleal coat in the soft coral Heteroxenia fuscescens. Marine Biology, 100(2):203-210.

Beirão, J., Robles, V., Herráez, M. P., Sarasquete, C., Dinis, M. T., Cabrita, E. (2006) Cryoprotectant microinjection toxicity and chilling sensitivity in gilthead seabream (Sparus aurata) embryos. Aquaculture, 261(3):897-903.

Ben-Yosef, D. Z., Benayahu, Y. (1999) The gorgonian coral Acabaria biserialis: life history of a successful colonizer of artificial substrata. Marine Biology, 135(3):473-481.

Bischof, J.C., Rubinsky, B. (1993) Large Ice Crystals in the Nucleus of Rapidly Frozen Liver Cells. Cryobiology, 30(6):597-603.

Blerkom, J. V. (2004) Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction, 128:269-280.

Blerkom, J. V., Sinclair, J., Davis, P. (1998) Mitochondrial transfer between oocytes: potential applications of mitochondrial donation and the issue of heteroplasmy. Human Reproduction, 13(10):2857-2868.

Brazaeu, D. A., Lasker, H. R. (1989) The reproductive cycle and spawning in a Caribbean gorgonian. The Biological Bulletin, 176(1):1-7.

Brazeau, D. A., Lasker, H. R. (1990) Sexual reproduction and external brooding by the Caribbean gorgonian Briareum asbestinum. Marine Biology, 104(3):465-474.

Bradbury, D. A., Simmonsa, T. D., Slaterb, K. J., Croucha, S. P. (2000) Measurement of the ADP: ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. Journal of Immunological Methods, 240(1-2):79-92.

Butler, W. H., (1970) Ultrastructural studies on mitochondrial swelling. Biochemical Journal, 118:883-886.

Caldeira, K., Wickett, M. E. (2003) Anthropogenic carbon and ocean pH. Nature, 425:365.

Ciemerych, M. A., Kubiak, J. Z., (1998) Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Developmental biology, 200(2):98-211.

Coffroth, M. A., Santos, S. R. (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist, 156:19-34.

Coimbra, A., Azevedo, C. (1984) Structure and evolution of the nucleolus during meiosis oogenesis. In: Ultrastructure of reproduction. (Van Blerkmon, J. and Motta P.M Eds.), Martinus Nijhoff, Boston, pp:127-139.

Coma, R., Gili, J. M., Zabala, M., Riera, T. (1994) Feeding and prey capture cycles in the aposymbiontic gorgonian Paramuricea clavata. Marine Ecology Progress Series, 115:257-270.

Coma, R., Ribes, M., Zabala, M., Gili, J. M. (1995) Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Marine Ecology Progress Series, 117:173-183.

Coss, R. A., Dewey, W. C., Bamburg, J. R. (1979) Effects of hyperthermia on chinese hamster ovary cells analyzed in mitosis. Cancer Research, 39(6):1911-1918.

Craik, J. C. A., Harvey, S. M. (1984) Biochemical changes associated with overripening of the eggs of rainbow trout Salmo gairdneri Richardson. Aquaculture, 37(4):347-357.

Dinnyes, A., Urbanyi, B., Baranyai, B., Magyary, I. (1998) Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology, 50(1):1-13.

Dobrinsky, R. J. (2001) Cryopreservation of swine embryos: a chilly past with a vitrifying future. Theriogenology, 56(8):1333-1344.

Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M., Hoegh-Guldberg, O. (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biology, 11:2251-2265.

Douglas, A. E. (1998) Host benefit and the evolution of specialization in symbiosis. Heredity, 81:599-603.

Downs, C. A., McDougall, K. E., Woodley, C. M., Fauth, J. E., Richmond, R, H. Kushmaro, A., Gibb, S. W., Loya, Y., Ostrander, G. K., Kramarsky-Winter, E. (2013) Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. Plos One, 8(12).

Drobnis, E. Z., Crowe, L. M., Berger, T., Anchordoguy, T. J., Overstreet, J. W., Crowe, J. H. (1993) Cold shock damage is due to lipid phase transitions in cell membranes: A demonstration using sperm as a model. Journal of Experimental Zoology, 265(4):432-437.

Eakin, C. M., Lough, J. M., Heron, S. F. (2009) Climate Variability and Change: Monitoring Data and Evidence for Increased Coral Bleaching Stress. Coral Bleaching, 205:41-67.

Eckelbarger, K. J. (1983) Evolutionary radiation in polychaete ovaries and vitellogenic mechanisms: their possible role in life history patterns. Canadian Journal of Zoology, 61(3):487-504.

Eckelbarger, K. J., Larson, R. (1992) Ultrastructure of the ovary and oogenesis in the jellyfish Linuche unguiculata and Stomolophus meleagris, with a review of ovarian structure in the Scyphozoa. Marine Biology, 114:633-643.

Eckelbarger, K. J. (1994) Diversity of metazoan ovaries and vitellogenic mechanisms: implications for life history theory. Proceedings of the Biological Society of Washington, 107(1):193-218.

Eckelbarger, K. J. Davis, C. V. (1996) Ultrastructure of the gonad and gametogenesis in the eastern oyster,Crassostrea virginica. I. Ovary and oogenesis. Marine Biology, 127(1):79-87.

Eckelbarger, K. J., Tyler, P. A., Langton, R. W. (1998) Gonadal morphology and gametogenesis in the sea pen Pennatula aculeata (Anthozoa: Pennatulacea) from the Gulf of Maine. Marine Biology, 132(4):677-690.

Engelmann, F., Dussert, S. (2013) Cryopreservation. Conservation of Tropical Plant Species, pp:107-119.

Excoffon, A. C., Acuña, F. H., Zamponi, M. O. (2004) Reproduction of the temperate octocoral Tripalea clavaria (Octocorallia: Anthothelidae) from sublittoral outcrops off Mar del Plata, Argentina. Journal of the Marine Biological Association of the UK, 84(4):695-699.

Felizardo, V. O., Mello, R. A., Murgas, L. D. S. (2010) Effect of cryopreservant combinations on the motility and morphology of curimba (Prochilodus lineatus) sperm. Animal reproduction, 122(3-4):259-263.

Fiorillo, I., Rossi, S., Alva, V., Gili, J. M., Lo´pez-Gonza´lez, P. J. (2013) Seasonal cycle of sexual reproduction of the Mediterranean soft coral Alcyonium acaule (Anthozoa, Octocorallia). Marine biology, 160:719-728.

Franks, F., Mathias, F. S., Galfre, P., Webster, S. D., Brown, D. (1983) Ice nucleation and freezing in undercooled cells. Cryobiology, 20:298-309.

Fukui, Y. (1991) Embryonic and larval development of the sea anemone Haliplanella lineata from Japan. Developments in Hydrobiology, 161-217:137-142.

Fuller, B. J. (2004) Cryoprotectants:the essential antifreezes to protect life in the frozen state. Cryoletters, 25(6):375-388.

Gaino, E., Scoccia, F. (2008) Female gametes of the black coral Cirrhipathes cfr. anguina (Anthozoa, Antipatharia) from the Indonesian Marine Park of Bunaken. Invertebrate Reproduction & Development, 51(3):119-126.

Gates, R.D., Baghdasarian, G., Muscatine, L. (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. The Biological Bulletin, 182:324-332.

Gerelchimeg, B., Li-Qing, L., Zhong, Z., Jiang-Tian, T., Qing-Ran, K., Jun, S., Xue-Dong,W., Zhong-Hua, L. (2009) Effect of chilling on porcine germinal vesicle stage oocytes at the subcellular level. Cryobiology, 59(1):54-58.

Ghetler, Y., Yavin, S., Shalgi, R., Arav, A. (2005) The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Human reproduction, 20(12):3385-3389.

Glynn, P. W. (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C, editor. Life and death of coral reefs. New York: Chapman and Hall. p. 68-95.

Gili, J. M., Ballesteros, E. (1991) Structure of cnidarian populations in Mediterranean sublittoral benthic communities as a result of adaptation to different environmental conditions. In: Ros JD, Prat N (eds) Homage to Ramon Margalef or why there is such
pleasure in studying nature. Oecologia aquat (Barcelona), 10:243-254.

Giraud, M. N., Motta, C., Boucher, D., Grizard, G. (2000) Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Human reproduction, 15:2160-2164.

González-Benito, M. E., Martin, C., Iriondo, J. M., Pérez, C. (1999) Conservation of the rare and endangered plants endemic to Spain. In: Benson EE (Ed) Plant conservation biotechnology. Taylor and Francis, London, pp: 251-264.

Gori, A., Bramanti, L., López-González, P., Thoma, J. N., Gili, J. M., Grinyo´, J., Uceira, V., Rossi, S. (2012) Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian Eunicella singularis. Marine biology, 159:1485-1496.

Graham, D., Patterson, B. D., (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annual Review of Plant Physiology, 33:347-372.

Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Bijoux, J. P., Robinson, J. (2006) Dynamic fragility of oceanic coral reef ecosystems. Proceedings National Academy Sciences USA, 103(22):8425-8429.

Graham, N. A. J., Bellwood, D. R., Cinner, J. E., Hughes, T. P., Norström, A. V., Nyström, M. (2013) Managing resilience to reverse phase shifts in coral reefs. The Ecological Society of America, 11(10):541-548.

Gunaratne, H. M., Yamagaki, T., Matsumoto, M., Hoshi, M. (2003) Biochemical characterization of inner sugar chains of acrosome reaction-inducing substance in jelly coat of starfish eggs. Glycobiology, 13:567-580.

Hagedorn, M., Carter, V. L., Steyn, R. A., Krupp, D., Leong, J. C., Lang, R. P., Tiersch, T. R. (2006) Preliminary studies of sperm cryopreservation in the mushroom coral. Cryobiology, 52(3):454-458.

Hagedorn, M., Carter, V. L., Leong, J. C., Kleinhans, F. W. (2010) Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology, 60:147-158.

Hajnoczky, G., Gyorgy, C., Muniswamy, M., Pacher, P. (2000) The machinery of local calcium signalling between sarco-endoplasmic reticulum and mitochondria. The Journal of Physiology, 529:69-81.

Hamaratogˇlua, F., Erogˇluc, A., Tonerb, M., Sadler, K. C. (2005) Cryopreservation of starfish oocytes. Cryobiology, 50(1):38-47.

Harii, S., Yamamoto, M., Hoegh-Guldberg, O. (2010) The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Marine biology, 157(6):1215-1224.

Harvey, B., Ashwood-Smith, M. J. (1982) Cryoprotectant penetration and supercooling in the eggs of salmonid fishes. Cryobiology, 19(1):29-40.

Hill, R. S., Bowen, I. D. (1976) Studies on the ovotestis of the slug Agriolimax reticulatus. Cell and tissue research, 173:465-482.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., Hatziolos, M. E. (2007) Coral reefs under rapid climate change and ocean acidification. Science, 318:737-1742.

Honegger, T. G., Koyanagi, R. (2008) The ascidian egg envelope in fertilization: structural and molecular features. Development Biology, 52:527-533.

Hughes, T. P. (1994).Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265:1547-1551.

Hutchings, P. A. (1986) Biological destruction of coral reefs. Coral Reefs, 4(4):239-252.

Imbs, A. B., Yakovleva, I. M., Latyshev, N. A., Pham, L. Q. (2010) Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russian Journal of Marine Biology, 36(6):452-457.

Isachenko, V., Isachenko, E., Michelmann, H. W.. Alabart, J. L., Vazquez, I., Bezugly, N., Nawroth, F. (2001) Lipolysis and ultrastructural changes of intracellular lipid vesicles after cooling of bovine and porcine GV-oocytes. Anatomia, Histologia, Embryologia, 30(6):333-338.

John Morris, G., Acton, E. (2012) Controlled ice nucleation in cryopreservation – A review. Elsevier, 66:85-92.

Jones, G. P., McCormick, M. I., Srinivasan, M., Eagle, J. V. (2004) Coral decline threatens fish biodiversity in marine reserves. Proceedings National Academy Sciences USA, 101(21):8251-8253.

Karow, A. M., Critser, J. K. (1997) Reproductive Tissue Banking: Scientific Principles. San Diego:Acadernic Press, pp: 1-472.

Kokita, T., Nakazono, A. (2001) Rapid response of an obligately corallivorous filefish Oxymonacanthus longirostris (Monacanthidae) to a mass coral bleaching event. Coral Reefs, 20:155-158.

Kratsch, H. A., Wise, R. R (2000) The ultrastructure of chilling stress. Plant, Cell and Environment, 23(4):337-350.

Kruger, A., Schleyer, M. H., Benayahu, Y. (1998) Reproduction in Anthelia glauca (Octocorallia: Xeniidae). I. Gametogenesis and larval brooding. Marine Biology, 131:423-432.

Larkman, A.U. (1984) The fine structure of mitochondria and the mitochondrial cloud during oogenesis on the sea anemone Actinia. Tissue and Cell, 16(3):393-404.

Lee, S. H., Singh, A. P., Chung, G. C., Kim, Y. S., Kong, I. B. (2002) Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus L.) root tips. Journal of Experimental Botany, 53(378):2225-2237.

Levitan, D. R. (1996) Predicting optimal and unique egg sizes in freespawning marine invertebrates. American Naturalist, 148(1):174-188.

Levitan, D. R. (2000) Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. The American Naturalist, 156: 175-192.

Levitan, D. R. (2006) Relationship between egg size and fertilization success in broadcast spawning marine invertebrates. Integrative and Comparative Biology, 46: 298-311.

Levitt, J. (1980) Responses of Plants to Environmental Stress, Volume 1: Chilling, Freezing, and High Temperature Stresses.

Leibo, S. P. (1992) Techniques for preservation of mammalian germplasm. Animal Biotech, 3:139-153.

Lin, C., Zhang, T., Kuo, F. W., Tsai, S. (2011) Gorgonian coral (Junceella juncea and Junceella fragilis) oocyte chilling sensitivity in the context of adenosine triohosphate response (ATP). CryoLetters, 32(2):141-147.

Lin, C., Zhang, T., Kuo, F. W., Tsai, S. (2011) Studies on oocytes chilling sensitivity in the context of ATP reponse of two gorgonian coral species (Junceella juncea and Junceella fragilis). CryoLetters, 32:141-147.

Lin, C., Tsai, S. (2012) The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology, 77(6):1257-1261.

Lin, C., Wang, L. H., Fan, T.Y., Kuo, F. W. (2012) Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. Plos One, 7(7).

Lin, C., Wang, L. H., Meng, P. J., Chen, C. S., Tsai, S., (2013) Lipid content and composition of oocytes from five coral species: potential implications for future cryopreservation efforts. Plos One, 8(2).

Lisboa, L. A., Andrade, E. R., Esper, C. R., Seneda, M. M. (2011) Ultrastructural analysis of bovine oocytes from ovarian follicles with different diameters. Semina: Ciências Agrárias, 32(4):1575-1582.

Liu, L., Hammar, K., Smith, P. J. S., Inoue, S., Keefe, D. L. (2001) Mitochondrial modulation of calcium signaling at the initiation of development. Cell Calcium, 30(6):423-433.

Lough, J. M., (2008) 10th anniversary review: a changing climate for coral reefs. Journal of Environmental Monitoring, 10(1):21-29.

Lovelock, J. E. (1953) The haemolysis of human red blood-cells by freezing and thawing. Biochimica et Biophysica Acta, 10:414-426.

Lovelock, J. E. (1954) The protective action of neutral solutes against haemolysis
by freezing and thawing. Biochemical Journal, 56(2): 265-270.

Ludvigsen, S. (2003) Speech by the Norwegian Minister of Fisheries - seminar hosted by the Brazilian Ministry of Fisheries Brasilia.

Lyons, J.M ., Raison, J. K. (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiology, 45:386-389.

MacNeil1, M. A., Graham, N. A. J., Cinner, J. E., Dulvy, N. K., Loring, P. A., Jennings, S., Polunin, N. V. C., Fisk, A. T., McClanahan, T. R. (2010) Transitional states in marine fisheries: adapting to predicted global change. Royal Science, 365 (1558):3753-3763.

Mazur, P. (1980) Limits to life at low temperatures and at reduced water contents and water activities. Limits of Life, 4:1-23.

Mazur, P., Rall, W. F., Rigopoulos, N. (1981) Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes. Biophysical Journal, 36(3): 653-675.

Mazur, P. (2004) in Life in the Frozen State, (Eds) BJ Fuller, NJ Lane & EE Benson. CRC Press, Boca Raton, pp: 3-65.

McClintock, J. B., Pearse, J. S. (1986) Organic and energetic content of eggs and juveniles of Antarctic echinoids and asteroids with lecithotrophic development. Comparative Biochemistry and Physiology Part A: Physiology, 85(2):341-345.

McGrath, J. J. (1987) Cold shock: thermoelastic stressing chilled biological membranes, in: K.R. Diller (Ed.), Network thermodynamics, Heat and Mass Transfer in Biotechnology, BED5 HTD, vol. 90., ASME, New York, pp: 57-66.

Miller, R. H., Mazur, P. (1976) Survival of frozen-thawed human red cells as a function of cooling and warming velocities. Cryobiology, 13:404-414.

Mitchell, N. D., Dardeau, M. R., Schroeder, W. W., Benke, A. C., (1992) Secondary production of gorgonian corals in the northern Gulf of Mexico. Marine Ecology Progress Serise, 87:275-281.

Monroy, A. (1953) A model for the cortical reaction of fertilization in the sea-urchin egg. Cellur and Molecular Life Sciences, 9(11):424-425.

Moran, A. L. (2009) Egg size as a life history character of marine invertebrates: Is it all it's cracked up to be? The Biological Bulletin, 216:226-246.

Moran, A. L., Manahan, D. T. (2004) Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. Journal of Experimental Marine Biology and Ecology, 306:17-36.

Muldrew, Ken., McGann, L. E. (1994) The osmotic rupture hypothesis of intracellular freezing injury. Biophysical Journal, 66:532-541.

Munday, P. L., Jones, G. P., Pratchett, M. S., Williams, A. J. (2008) Climate change and the future for coral reef fishes. Fish Fisherise, 9(3):1-25.

Nagashima, H., Kashiwazaki, N., Ashman, R. J., Grupen, C. G., Seamark, R. F., Nottle, M. B. (1994) Removal of cytoplasmic lipid enhances the tolerance of porcine embryos to chilling. Biology of Reproduction, 51(4):618-622.

Najmudeen, T. M. (2008) Ultrastructural studies of oogenesis in the variable abalone Haliotis varia (Vetigastropoda: Haliotidae). Aquatic Biology, 2:143-151.

Neill, A. T., Vacquier, V. D. (2004) Ligands and receptors mediating signal transduction in sea urchin spermatozoa. Reproduction, 127:141-149.

Nishida, I., Murata, N. (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular Biology, 47:541-568.

Obura, D. O. (2005) Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean. Estuarine, Coastal and Shelf Science, 63(3):353-372.

Pal, P., Hodgson, A. N. (2002) An ultrastructural study of oogenesis in a planktonic and a direct-developing species of Siphonaria (Gastropoda: Pulmonata). Journal of molluscan studies, 68:337-344.

Palacína, I., Yániza, J. L., Fantovab, E., Blascob, M. E., Quintín-Casorránc, F. J., Sevilla-Murc, E., Santolaria, P. (2012) Factors affecting fertility after cervical insemination with cooled semen in meat sheep. Animal Reproduction Science, 132:139-144.

Pakes, M. J., Woollacott, R. M. (2008) Reproduction of the gorgonian Plexaura flexuosa in Bermuda. Journal of Experimental Marine Biology and Ecology, 357(2):121-127.

Parks, J. E. (1997) Hypothermia and mammalian gametes. In Karrow A. M., Critser, J. K. Reproductive Tissue Banking: Scientific Principles, pp: 229-461.

Pearl, M., Arav, A. (2000) Chilling sensitivity in zebrafish (Brachydanio rerio) oocytes is related to lipid phase transition. CryoLetters, 21(3):171-178.

Pegg, D.E., Diaper, M. P. (1989) The “unfrozen fraction” hypothesis of freezing injury to human erythrocytes: A critical examination of the evidence. Cryobiology, 26(1):30-43.

Pegg, D. E. (2007) Principles of Cryopreservation.Cryopreservation and Freeze-Drying Protocols Methods in Molecular Biology, 368, pp: 39-57.

Pfanestiel, H. D., Grunig, C. (1982) Yolk formation in an annelid (Ophriotrocha puerilis), polychaeta). Tissue Cell, 14:669-680.

Pickering, S. J., Johnson, M. H. (1987) The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Human Reproduction, 2(3):207-216.

Pickrd A. R., Holt W. V. (2004) Cryoperservation as a supporting measure in species conservation: not the frozen zoo In: Fuller B, Lane N, Benson EE (Eds) Life in the frozen state. pp: 393-414.

Pikal, M. J. (1990) Freeze-drying of proteins. Part I: process design. BioPharm 3:18-28.

Pikal, M. J. (1990) Freeze-drying of proteins part II: formulation selection. BioPharm 3:26-30.

Pipe, R. K. (1987) Oogenesis in the marine mussel Mytilus edulis: an ultrastructural study. Marine Biology, 95(3):405-414.

Pitt, R. E., Steponkus, P. L. (1989) Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts. Cryobiology, 26(1):44-63.

Polge, C., Smith, A. U., Parkes, A. S. (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 164:666.

Polidoro, B., Carpenter, K. (2013) Dynamics of Coral Reef Recovery. Science, 340 (6128):34-35.

Pratchett, M. S., Wilson, S. K., Baird, A. H. (2006) Declines in the abundance of Chaetodon butterflyfishes (Chaetodontidae) following extensive coral depletion. Fish Biology, 69(5):1269-1280.

Pratchett, M. S., Wilson, S. K., Graham, N. A. J., Munday, P. L., Jones, G. P., Polunin, N. V. C. (2009) Coral Bleaching and Consequences for Motile Reef Organisms: Past, Present and Uncertain Future Effects. Coral Bleaching, 205:139-158.

Pratchett, M. S., Wilson, S. K., Graham, N. A. J., Munday, P. L., Jones, G. P., Polunin N. V. C. Forthcoming. Multi-scale temporal effects of climate-induced coral bleaching on motile reef organisms. In: van Oppen M, Lough JM, editors. Coral bleaching: patterns and processes, causes and consequences. New York: Springer.

Radhakrishna T. G., Ramanatha C. L., Gupta, C., Reddy, N. C. (1983) Economics of artificial insemination and calves born from liquid semen and frozen semen. Indian Journal of Animal Reproduction, 3:44-45.

Ramirez Llodra, E. (2002) Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology, 43:87-170.

Renard, P. (1991) Cooling and freezing tolarances in embryos of the Pacific oyster, Crassostrea gigas: methanol and sucrose effects. Aquaculture, 92:43-57.

Ribes, E. (1986) La gametogénesis de Hemidiaptonus roubaui, Richard, 1888. (Copepoda, Calanoida). Estudio ultraestructural. PhD thesis, Univ. Barcelona.

Ribes, M., Coma, R., Rossi, S., Micheli, M. (2007) Cycle of gonadal development in Eunicella singularis (Cnidaria Octocorallia) trends in sexual reproduction in gorgonians. Invertebrate Biology, 126(4):307-317.

Rigby, J. E. (1979) The fine structure of the oocyte and follicle cells of Lymnaea stagnalis, with special reference to the nutrition of the oocyte. Malacologia, 18(1-2):377-380.

Richmond, R. H. (1981) Energetic considerations in the dispersal of Pocillopora damicornis (Linnaeus) planulae. In: Gomez ED et al. (eds) Proc 4th int coral Reef Symp. Vol. 2. Marine Sciences Centre, University of the Phillipines, Manila, pp: 153-156.

Riesgo, A., Maldonado, M. (2009) Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue and Cell, 41(1):51-56.

Quinn, P. J. (1985) A lipid-phase separation model of low-temperature damage to
biological membranes. Cryobiology, 22:128-146.

Sano, M., Shimizu, M., Nose, Y. (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation of reef fish communities at Iriomote Island, Japan. Marine Ecology Progress Series, 37:191-199.

Sathananthan, A. H., Kirby,C., Trounson, A., Philipatos, D., Shaw, J. (1992) The effects of cooling mouse oocytes. Journal of Assisted Reproduction and Genetics, 9(2):139-148.

Schröder, M. (2008) Endoplasmic reticulum stress responses. Cellular and molecular life sciences, 65:862-894.

Schwarz, J. A., Weis, V. M., Potts, D. C. (2002) Feeding behavior and acquisition of zooxanthellae by planula larvae of the sea anemone Anthopleura elegantissima. Marine Biology, 140:471-478.

Sciscioli, M., Liaci, L. S., Lepore, E., Gherardi, M., Simpson, T. L. (1991) Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (Porifera Demospongiae). Molecular Reproduction and Development, 28(4):346-350.

Seo, S.Y., Hwang, S. J., Song, J. I. (2008) Sexual reproduction of Anthoplexaura dimorpha (Gorgonacea: Octocorallia) from Munseom, Jejudo islands, Korea. Animal Cells and Systems, 12(4):231-240.

Sewell, M. A., Young, C. M. (1997) Are echinoderm egg size distributions bimodal? The Biological Bulletin, 193:297-305.

Sheppard, C. R. C., Spalding, M., Bradshaw, C., Wilson, S. (2002) Erosion vs. recovery of coral reefs after El Nin˜o: Indian Ocean. BioOne, 104:79-86.

Shlesinger, Y., Goulet, T. L., Loya, Y. (1998) Reproductive patterns of scleractinian corals in the northern Red Sea. Marine Biology, 132(4):691-701.

Shiroya, T., Sakai, Y. T. (1995) Filamentous structure of the external surface of abalone eggs revealed by quick-freeze deep-etch technique. Development Growth Differentiation, 37:85-91.

Silva, J. R. V., Báo, S. N., Lucci, C. M., Carvalho, F. C. A., Andrade, E. R., Ferreira, M. A. L., Figueiredo, J. R. (2001) Morphological and ultrastructural changes occurring during degeneration of goat preantral follicles preserved in vitro. Animal Reproduction Science, 66(3):209-223.

Songsasen, N., Yu, I. J., Ratterree, M. S., VandeVoort, C. A., Leibo, S. P. (2002) Effect of chilling on the organization of tubulin and chromosomes in rhesus monkey oocytes. Fertility and sterility, 77(4):818-825.

Steinhardt, R., Zucker, R., Schatten, G. (1977) Intracellular calcium release at fertilization in the sea urchin egg. Developmental biology, 58(1):185-196.

Storey, K. B., Storey, J. M. (2005) Freeze tolerance. In: Extremophiles (Gerday, C. and Glansdorff, N., eds.) Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK.

Stubbs, C. D., Smith, A. D. (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et Biophysica Acta, 779:89-137.

Suphamungmee, W., Chansela, P., Weerachatyanukul, W., Poomtong, T., Vanichviriyakit, R., Sobhon, P. (2010) Ultrastructure, composition, and possible roles of the egg coats in Haliotis asinine. Journal of Shellfish Research, 29(3):687-697.

Suzuki, M., Cboi, B. H. (1990) The behavior of the extracellular matrix and the basal lamina during the repair of cryogenic injury in the adult rat cerebral cortex. Acta Neuropathol, 80: 355-361.

Swenson, K. I., Borgese, N., Pietrini, G., Ruderman, J. V. (1987) Three translationally regulated mRNAs are stored in the cytoplasm of clam oocytes. Developmental Biology, 123(1):10-16.

Tsai, S., Rawson, D. M., Zhang, T., (2009) Studies on chilling sensitivity of early stage zebrafish (Danio rerio) ovarian follicles. Cryobiology, 58(3):279-86.

Tsai, S., Spikings, E., Huang, I. C., Lin, C. (2011) Study on the mitochondrial activity and membrane potential after exposing later stage oocytes of two gorgonian corals (Junceella juncea and Junceella fragilis) to cryoprotectants. Cryoletters, 32(1):1-12.

Tsvetkov, T., Naydenova, Z. (1987) Activity of ATP synthetase complex after low temperature treatment or freeze-drying of mitochondria isolated from skeletal muscles. Cryobiology, 24(3):280-284.

Tøien, Ø., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C., (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science, 331(6019):906-909.

Uyarra, M. C., Côté, I. M., Gill, J. A., Tinch, R. R.T., Viner, D., Watkinson, A. R. (2005) Island-specific preferences of tourists for environmental features: implications of climate change for tourism-dependent states. Environmental Conservation, 32(1):11-19.

Van Blerkom, J., Sinclair, J., Davis, P. (1998) Mitochondrial transfer between oocytes: potential applications of mitochondrial donation and the issue of heteroplasmy. Human Reproduction, 13(10):2857-2868.

Valdez, D. M. Jr., Miyamoto, A., Hara, T., Edashige, K., Kasai, M. (2005) Sensitivity to chilling of medaka (Oryzias latipes) embryos at various developmental stages. Theriogenology, 64(1):112-122.

Vincent, W. S., Halvorson, H. O., Chen, H. R., Shin, D. (1996) A comparison of ribosomal gene amplification in uni- and multinucleolate oocytes. Experimental cell research. 57(2):240-250.

Vogt, G., Huber, M., Thiemann, M. van den Boogaart, G., Schmitz, O. J., Shubart, C. D. (2009) Production of different phenotypes from the same genotype in the same environment by developmental variation. Journal of Experimental Biology, 211:510-513.

Watson, P. F., Morris, G. J. (1987) Cold shock injury in animal cells. Symposia of the Society for Experimental Biology, 41:311-340.

Wendt, P. H., van Dolah, R. F., O’Rourke, C. B. (1985) A comparative study of the invertebrate macrofauna associated with seven sponge and coral species collected from the South Atlantic Bight. Elisha Mitchell Scientific Society, 101:187-203.

Weis, V. M., Reynolds, W. S., deBoer, M. D., Krupp, D. A. (2001) Hostsymbiont specificity during onset of symbiosis between the dinoflagellates Symbodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs, 20:301-308.

White, I. G. (1993) Lipids and calcium uptake of sperm in relation to cold shock
and preservation: a review. Reproduction, fertility and development, 5:639-658.

Wilson, S. K., Graham, N. A. J., Pratchett, M. S., Jones, G. P., Polunin, N. V. C. (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Globa Change Biology, 12(11):2220-2234.

Wooldridge, S. A. (2010) Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? Bioessays, 32(7):615-625.

Wu, B., Tong, J., Leibo, S. P. (1999) Effects of cooling germinal vesicle-stage bovine oocytes on meiotic spindle formation following in vitro maturation. Molecular Reproduction and Development, 54:388-395.

Yamashiro, H., Oku, H., Onaga, K. (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fisheries Science, 71:448-453.

Zenzes, M. T., Bielecki, R., Casper, R. F., Leibo, S. P. (2001) Effects of chilling to 0 degrees C on the morphology of meiotic spindles in human metaphase II oocytes. Fertility and Sterility, 75(4):769-777.

Zeron, Y., Pearl, M., Borochov, A., Arav, A. (1999) Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes, Cryobiology, 38:35-42.

Zeron, Y., Sklan, D., Arav, A. (2002) Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Molecular Reproduction and Development, 61(2):271-278.

Zhang, T., Isayeve, A., Adams, S. L., Rawson D. M. (2005) Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology, 50(3):285-293.

莊雅婷,2012。低溫保存對柳珊瑚(Junceella juncea)卵母細胞超微結構之影響。國立東華大學海洋生物科技研究所碩士論文。

張威傑,2013。六種石珊瑚卵母細胞超微結構解析應用於低溫冷凍保存技術之研究。國立東華大學海洋生物科技研究所碩士論文。

張宗勤,2007 台灣南部海域四種柳珊瑚有性生殖。國立中山大學海洋研究所碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊