|
[1]游勝傑,薄膜處理水技術。 [2]周宇婷、鄧宗禹,以生物吸附法去除銅製程研磨廢水之銅離子。 [3]C. Butchosa, P. Guiglion, M. A. Zwijnenburg, Carbon nitride photocatalysts for water splitting: A computational perspective, J. Phys. Chem. C, 2014, 118, 24833. [4]S. Bai, W. Jiang, Z. Li, Y. Xiong, Surface and interface engineering in photocatalysis, ChemNanoMat, 2015, 1, 223. [5]T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev., 2014, 43, 7520. [6]W-J. Ong, L-L. Tan, Y. H. Ng, S-T. Yong, S-P. Chai, Graphitic carbon nitride (g‑C3N4)‑based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?, Chem. Rev., 2016, 116, 7159. [7]Y. Gong, M. Li, H. Li, Y. Wang, Graphitic carbon nitride polymers: Promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation, Green. Chem., 2015, 17, 715. [8]F. Dong, Z. Ni, P. Li, Z. Wu, A general method for type I and type II g-C3N4/g-C3N4 metal-free isotype heterostructures with enhanced visible light photocatalysis, New J. Chem., 2015, 39, 4737. [9]J.C. Kotz, P.M. Treichel, J. Townsend, Chemistry and chemical reactivity, 2011, 695. [10]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 2009, 38, 253. [11]M. Grätzel, Photoelectrochemical cells, Nature, 2001, 414, 338. [12]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37. [13]J. Liebig, Uber einige Stickstoff ‐ Verbindungen, Annalen, 1834, 10, 10. [14]A.Y. Liu, M.L. Cohen, Prediction of New Low Compressibility Solids, Science, 1989, 245, 841. [15]B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: A review, Appl. Catal. B-Environ., 2018, 224, 983. [16]Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int., 2012, 51, 68. [17]Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine, Sci. Rep., 2013, 3, 1943. [18]X.Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antoniett, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 2009, 8, 76. [19]A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J-O. Muller, R. Schlogl J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 2008, 18, 4893. [20]G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fanatastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, J. Photoch. Photobio. C, 2014, 20, 30. [21]Z. Lin, X. Wang, Nanostructure Engineering and Doping of Conjugated Carbon Nitride Semiconductors for Hydrogen Photosynthesis, Angew. Chem. Int. Ed., 2013, 52, 1735. [22]X-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, X. Wang, Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion, Chem. Mater., 2011, 23, 4344. [23]P. Niu, L. Zhang, G. Liu, H-M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 2012, 22, 4763. [24]X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging, J. Am. Chem. Soc., 2013, 135, 18. [25]X. Du, G. Zou, Z. Wang, X. Wang, A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets, Nanoscale, 2015, 7, 8701. [26]M-H. Wu, L. Li, Y-C. Xue, G. Xu, L. Tang, N. Liu, W-Y. Huang, Fabrication of ternary GO/g-C3N4/MoS2 flower-like heterojunctions with enhanced photocatalytic activity for water remediation, Appl. Catal. B-Environ., 2018, 228, 103. [27]X. Rong, F. Qiu, J. Rong, X. Zhu, J. Yan, D. Yang, Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2, Mater. Lett., 2016, 164, 127. [28]J. Wang, J. Cong, H. Xu, J. Wang, H. Liu, M. Liang, J. Gao, Q. Ni, J. Yao, Facile gel-based morphological control of Ag/g‑C3N4 porous nanofibers for photocatalytic hydrogen generation, ACS Sustainable Chem. Eng., 2017, 5, 10633. [29]J. Xu, K-Z. Long, Y. Wang, B. Xue, Y-X. Li, Fast and facile preparation of metal-doped g-C3N4 composites forcatalytic synthesis of dimethyl carbonate, Appl. Catal. A-Gen., 2015, 496, 1. [30]W. Guo, J. Zhang, G. Li, C. Xu, Enhanced photocatalytic activity of P-type (K, Fe) co-doped g-C3N4 synthesized in self-generated NH3 atmosphere, Appl. Surf. Sci., 2019, 470, 99. [31]S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus, Appl. Surf. Sci., 2014, 311, 164. [32]Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A, 2015, 3, 3862. [33]G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H-M. Cheng, Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4, J. Am. Chem. Soc., 2010, 132, 11642. [34]G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater., 2014, 26, 805. [35]S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 2010, 26, 3894. [36]J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity, Small, 2017, 13, 1603938. [37]P. Xiao, D. Jiang, T. Liu, D. Li, M. Chen, Facile synthesis of carbon-doped g-C3N4 for enhanced photocatalytic hydrogen evolution under visible light, Mater. Lett., 2018, 212, 111. [38]Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon, 2016, 99, 111. [39]A. J. Bard, L. R. Faulkner, Electrochemical methods fundamentals and applications 2nd, 2001. [40]J. Bai, Y. Sun, M. Li, L, Yang, J. Li, The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment, Diam. Relat. Mater., 2018, 87, 1. [41]R. P. Sawant, K. Y. Rajpure, C.H. Bhosale, Determination of CdIn2S4 semiconductor parameters by (photo)electrochemical technique, Physica B, 2007, 393, 249, [42]A. Sarkar, K. Karmarkar, A. K. Singh, K. Mandal, G. G. Khan, Surface functionalized H2Ti3O7 nanowires engineered for visible-light photoswitching, electrochemical water splitting, and photocatalysis, Phys. Chem. Chem. Phys., 2016, 18, 26900. [43]J.Chen, Z. Hong, Y. Chen, B. Lin, B. Gao, One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light, Mater. Lett., 2015, 145, 129. [44]Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets, ACS Appl. Mater. Interfaces, 2016, 8, 27661. [45]N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G. I. N. Waterhouse, T. Zhang, H. Huang, Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution, Nano Energy, 2017, 38, 72. [46]W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride, J. Photochemistry and photobiology C, 2016, 28, 87. [47]S. Lamkhao, C. Randorn, Self-initiated photocatalytic polymerization of tough and flexible polyacrylamide hydrogel/polymeric semiconductor C3N4 composites, J. Photopolym. Sci. Technol., 2017, 30, 425. [48]B. Kumru, M. Shalom, M. Antonietti, B. V. K. J. Schmidt, Reinforced hydrogels via carbon nitride initiated polymerization, Macromolecules, 2017, 50, 1862. [49]J. Sun, B. V. K. J. Schmidt, X. Wang, M. Shalom, Self-standing carbon nitride-based hydrogels with high photocatalytic activity, ACS Appl. Mater. Interfaces, 2017, 9, 2029. [50]J. Liu, T. An, Z. Chen, Z. Wang, H. Zhou, T. Fan, D. Zhang, M Antonietti, Carbon nitride nanosheets as visible light photocatalytic initiators and crosslinkers for hydrogels with thermoresponsive turbidity, J. Mater. Chem. A, 2017, 5, 8933. [51]W. Jiang, W. Luo, R. Zong, W. Yao, Z. Li, Y. Zhu, Polyaniline/carbon nitride nanosheets composite hydrogel: A separation-free and high-efficient photocatalyst with 3D hierarchical structure, Small, 2016, 12, 4370. [52]X. Wang, Y. Liang, W. An, J. Hu, Y. Zhu, W. Cui, Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light, Appl. Catal. B-Environ., 2017, 219, 53. [53]Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, Three-Dimensional porous aerogel constructed by g‑C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance, ACS Appl. Mater. Interfaces, 2015, 7, 25693. [54]M. Zhang, W. Jiang, D. Liu, J. Wang, Y, Liu, Y. Zhu, Y. Zhu, Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation, Appl. Catal. B-Environ., 2016, 183, 263. [55]K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment J. Phys. Chem. B, 2006, 110, 11352. [56]R. You, H. Dou, L. Chen, S. Zheng Y. Zhang, Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance, RSC Adv., 2017, 7, 15842. [57]L. Liua, X. Xu, Z. Si, Z. Wang, R. Ran, Y. He, D. Weng, Noble metal-free NiS/P-S codoped g-C3N4 photocatalysts with strong visible light absorbance and enhanced H2 evolution activity, Catal. Commun., 2018, 106, 55. [58]Q. Liu, J. Zhang, Graphene supported Co-g‑C3N4 as a novel metal−macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells, Langmuir, 2013, 29, 3821. [59]X. Wang, X. Li,W. Chen, R. Wang, W. Bian, M. M. F. Choi, Phosphorus doped graphitic carbon nitride nanosheets as fluorescence probe for the detection of baicalein, Spectrochim. Acta. A, 2018, 198, 1. [60]B. Zhua, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst, Appl. Surf. Sci., 2017, 391, 175. [61]H. B. Fang, X. H. Zhang, J. Wu, N. Li, Y. Z. Zheng, X. Tao, Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution, Appl. Catal. B-Environ., 2018, 225, 397. [62]J. Feng, D. Zhang, H. Zhou, M. Pi, X. Wang, S. Chen, Coupling P nanostructures with P‑doped g‑C3N4 as efficient visible light photocatalysts for H2 evolution and RhB degradation, ACS Sustainable Chem. Eng., 2018, 6, 6342. [63]Y. Hou, Y. Gan, Z. Yu, X. Chen, L. Qian, B. Zhang, L. Huang, J. Huang, Solar promoted azo dye degradation and energy production in the biophotoelectrochemical system with a g-C3N4/BiOBr heterojunction photocathode, J. Power Sources, 2017, 371, 26. [64]H. Zhao, H. Yu, X. Quan, S. Chen, H. Zhao, H. Wang, Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation, RSC Adv., 2014, 4, 624.
|