[1]Y. S. Hwang, M. S. Lin, B. H. Hwang, and J. J. Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” in Proc. ASSCC 2008, Nov. 2008, pp. 153-156.
[2]W. Chen, J. Chen, T. Liang, L. Wei, J. Huang, and W. Ting, “A novel quick response of RBCOT with VIC ripple for buck converter,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4299–4307, Sep. 2013.
[3]C.-C. Fang and R. Redl, “Subharmonic instability limits for the peak-current-controlled buck converter with closed voltage feedback loop,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 1085–1092, Feb. 2015.
[4]J. J. Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 4, pp. 761-769, Apr. 2008.
[5]B. Labbe, B. Allard, X. Shi, and D. Chesneau, “An integrated sliding mode buck converter with switching frequency control,” IEEE Trans. Power Electron., vol. 28, no. 9, pp. 4318–4326, Sep. 2013.
[6]B. Razavi, “Design of analog CMOS integrated circuits”, McGraw-Hill, 2001.
[7]P.E. Allen, “CMOS Analog Circuit Design,” Oxford University Press., 2002.
[8]蘇韋吉, 鄒應嶼,“單石 CMOS 降壓型 DC-DC 電源 IC 的設計與模擬,”電子月刊, 136 期, 2006 年 11 月[9]劉深淵 編著,鎖相迴路,2006。
[10]A. Yoo, M. Chang, O. Trescases, and N. Wai Tung, “High Performance Low-Voltage Power MOSFETs with Hybrid Waffle Layout Structure in a 0.25μm Standard CMOS Process,” in Proc. 20th International Symposium on Power Semiconductor Devices and ICs, 2008 (ISPSD 08), May 18–22, pp. 95–98.
[11]M. P. Chan and P. K. T. Mok, “A monolithic digital ripple-based adaptive-off-time DC-DC converter with a digital inductor current sensor,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1837–1847, Aug. 2014.
[12]S.-H. Lee, J.-S. Bang, K.-S. Yoon, S.-W. Hong, C.-S. Shin, M.-Y. Jung, and G.-H. Cho, “A 0.518 mm2 quasi-current-mode hysteretic buck dc–dc converter with 3 μs load transient response in 0.35 μm BCDMOS,” in Proc. IEEE ISSCC Dig. Tech. Papers, 2015, pp. 214–215.
[13]S. Kim et al., “High frequency buck converter design using time-based control techniques,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 990–1001, Apr. 2015.
[14]W.-C. Chen, H.-C Chen, M.-W Chien, Y.-W Chou, K.-H Chen, Y.-H Lin, T.-Y Tsai, S.-R Lin, and C.-C Lee, “Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques,” IEEE Trans. Power Electronics, vol. 31, no.5, pp. 3650-3662 ,May. 2016.
[15]W. Schweber, Electronic Communication Systems, Prentice-Hill, Inc., 4th ed., 2002.
[16]G. A. S. Machado, N. C. Battersby, and C. Tomazou, “On the Development of Analogue Sampled-Data Signal Processing,” Anal. Integr.Circuits Signal Process., vol. 12, pp. 179–199, 1997.
[17]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford, pp. 698-713, 2002.
[18]D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[19]R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, IEEE Press, John Wiley & Sons, Inc., 2005.
[20]Yves Geerts, Michiel Steyaert and Willy Sansen, Design of Multi-Bit Delta-Sigma A/D Converters, Klower Academic Publishers, Boston, 2002.
[21]趙大瑋, 使用三角積分調變器之降壓型轉換器研製,碩士論文,國立臺北科技大學電腦與通訊研究所, 2012。[22]賴柏翰, 具有快速暫態響應和低電磁干擾升壓轉換器設計,碩士論文,國立臺北科技大學電腦與通訊研究所, 2014。[23]江修, 用於電池電源的DC-DC轉換器動態調整研究,碩士論文,國立交通大學電機學院 電機與控制學程, 2008。[24]M. Song and D. Ma, “A fast-transient over-sampled delta-sigma adaptive DC-DC converter for power-efficient noise-sensitive devices,” in Proc. IEEE Int. Symp. Low Power Electron., Aug. 2007, pp. 286–291.
[25]S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation, IEEE Press, 1997, pp. 219-243.
[26]X. Jing and P. K. T. Mok, “A fast fixed-frequency adaptive-on-time boost converter with light load efficiency enhancement and predictable noise spectrum,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2442–2456, Oct. 2013.
[27]Y.-S. Hwang, Y.-T. Ku, A. Liu, C.-H. Chen, and J.-J. Chen, “A new efficiency-improvement low-ripple charge-pump boost converter using adaptive slope generator with hysteresis voltage comparison techniques,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 5, pp. 935–942, May 2015.
[28]Y.-S. Hwang, J.-J. Chen, B.-H. Lai, Y.-T. Ku, and C.-C. Yu, “A fast-transient boost converter with noise-reduction techniques for wireless sensor networks,” IEEE Sens. J., vol.16, no. 9, pp. 3188–3197, May 2016.
[29]Y. Zhang, D. Li, S. Fan, Z. Chen, Y. Wang, and L. Geng, “Analysis and implementation of high performance integrated KY converter,” IEEE Trans. Power Electronics, vol. pp, no.99, pp. 1-1 , Jan. 2017.
[30]陳建豪, 定頻式主動電流感測技術之磁滯電流控制直流-直流轉換器,碩士論文,國立臺北科技大學電腦與通訊研究所, 2007。[31]J.-J. Chen, M.-X. Lu, T.-H. Wu, and Y.-S. Hwang, “Sub-1-V fast-response hysteresis-controlled CMOS buck converter using adaptive ramp techniques,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 9, pp. 1608–1618, Sep. 2013.
[32]P.-Y. Wang, L.-T. Wu, and T.-H. Kuo, “A Current-Mode Buck Converter with Bandwidth Reconfigurable for Enhanced Efficiency and Improved Load Transient Response,” in Proc. Tech Papers A-SSCC, pp. 69 - 72, Nov. 2014.
[33]J. Li, “Current-mode control: Modeling and its digital application “ Ph.D. dissertation, Virginia Polytechnic Inst. and State Univ., 2009.