跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉冠麟
研究生(外文):Liu, Kuan-Lin
論文名稱:板岩邊坡在極端降雨下之邊坡穩定分析
論文名稱(外文):Slope stability analysis under extreme rainfall in slate slope
指導教授:盧之偉盧之偉引用關係林宏明林宏明引用關係
指導教授(外文):Lu, Chih-WeiLin, Hung-Ming
口試委員:林宏明翁孟嘉許懷後蔡元融吳博凱
口試委員(外文):Lin, Hung-MingWeng, Meng-ChiaHsu, Huai-HouhTsai, Yuan-JungWu, Po-Kai
口試日期:2018-07-12
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:127
中文關鍵詞:深層崩塌極端降雨板岩累積降雨量降雨延時地下水
外文關鍵詞:Deep-seated landslideExtreme rainfallSlateCumulative rainfallRainfall durationGroundwater.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
隨著全球暖化與氣候變遷影響,極端降雨事件未來可能成為常態,重大災害將更加頻繁。每逢颱風、豪雨等降雨季節期間,對於極端降雨常會誘發較嚴重之深層崩塌坡地災害。分析近二十年來臺灣各地區致災性豪雨降雨資料,發現邊坡災害之成因多是「連續降雨過多」或「短延時雨量過強」所致。以輕度變質之板岩為例,其構成邊坡板岩材料抗侵蝕能力相較於泥岩或頁岩材料為高,惟板岩極易沿其葉理方向裂開,轉為細碎薄片狀之面狀構造,當板岩劈理受邊坡長時間重力及風化作用後,其材料將逐漸弱化而造成潛變(creep)行為,即板岩邊坡變形過程中,亦會發展節理裂隙,促使降雨入滲引致地下水位抬升岩屑崩滑可能性增加。
本研究選用深層崩塌高風險區之臺中市梨山區松茂崩塌地與臺東縣金峰鄉新興崩塌地二個同屬板岩邊坡區域,利用現地降雨與地下水位變動之監測資料,以數值分析軟體SEEP/W模組模擬降雨引致地下水位抬升關係,再利用SLOPE/W模組針對已知滑動面之地下水位抬升與邊坡穩定之關係。為因應極端氣候造成降雨回歸周期的改變,本研究應用前峰型、中峰型、後峰型、平均型等設計雨型,對二處邊坡進行模擬分析,嘗試建立降雨引致邊坡壞預警系統。經模擬分析及驗證後提出降雨延時與累積降雨量之關係及最高地下水位累積降雨量與水位抬升高度之關係兩種模式,做為評估之基準,相關研究成果如下:(一) 降雨延時(X)與累積降雨量(Y)之關係:松茂崩塌地可得到F.S.=1.05時上界為Y=-7.221*X+1844.052與下界Y=-7.221*X+1630滑動面達臨界狀態;新興崩塌地可得到F.S.=1.0時Y=0.35*X+371.98與F.S.=1.05時Y=0.021*X+143.56滑動面之臨界狀態。(二)最高地下水位累積降雨量(X)與水位抬升高度(Y)之關係:松茂崩塌地可得之關係式為Y=0.00387*X,且當Y=3m,FS=1.05、Y=6m,FS=1.0;於新興崩塌地之關係式為Y=0.00789*X,且當Y=1.0m,FS=1.05、Y=3.87m,FS=1.0。

With global warming and climate change issues, extreme rainfall events in the future may become the normal, causing severe disaster events will be more frequent. During the rainy season such as typhoon and heavy rain, severe rainfall often induces more serious slope disasters. Analysis of the devastating heavy rainfall in Taiwan in the past two decades, the occurrence of slope disasters is mostly caused by "excessive continuous rainfall" or "short-duration rainfall". For mild metamorphic slate, its erosion resistance is higher than that of mud or shale. However, the slate is easily split along its cleavage direction and turned into a finely- cut sheet. When subjected to long-term gravity and weathering, the material of shale will gradually become weaken and turn into creep. That is, during the deformation process of slate slope, joint fissures will gradually grow out. When the rainfall infiltration leads to groundwater level rise, the possibility of rock debris collapse will increase.
In this study, high- risk areas with deep collapse were selected for analysis, taking Songmao Landslide area in Lishan District and Sinsing Landslide area in Jinfeng Township, Taitung County as examples. To simulate groundwater level rise caused by rainfall, this study conducted SEEP/W module of GeoStudio numerical software. The groundwater level monitoring data will be used for verification. Then, the SLOPE/W module of GeoStudio numerical software is used for slope stability analysis. Exploring the relationship between groundwater level rise and safety factor of slope is one of the main task in this study.
The uncertainty of rainfall caused by extreme weather is researched herein. In this study, the design of rainfall patterns such as advanced, intermediated, delayed and uniform rainfalls models were simulated. This study tried to establish a deep- seated landslide disaster warning system. After simulation analysis and verification, the relationship between rainfall duration and accumulated rainfall and the relationship between the maximum groundwater level cumulative rainfall and water level elevation were proposed as the evaluation criteria. The relevant research results are as follows: (1) Relationship between rainfall duration (X) and cumulative rainfall (Y): When FS=1.05 of Songmao Landslide area, the upper bound is Y=-7.221*X+1844.052, and the lower bound Y=-7.221 *X+1630. The FS=1.0 of Sinsing Landslide area, Y=0.35*X+371.98; when FS=1.05, Y=0.021*X+143.56. (2) Relationship between cumulative rainfall at the highest groundwater level (X) and rise of groundwater level (Y): In Songmao Landslide area, the relationship of cumulative rainfall at the highest groundwater level and rise of groundwater level is Y=0.00387*X; and when Y=3m, FS=1.05; Y=6m, FS=1.0. In Sinsing Landslide area, the relationship is Y=0.00789*X; and when Y=1.0m, FS=1.05; Y=3.87m, FS=1.0.

摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 研究方法 5
第二章 文獻回顧 7
2-1 深層崩塌 7
2-2 邊坡破壞與降雨之相關研究 10
2-3 邊坡災害降雨警戒管理值 16
2-4 Geo-Studio程式介紹 23
2-4.1 SEEP/W模組 23
2-4.2 SLOPE/W 24
2-5 不飽和土壤 27
2-5.1 不飽和土壤基質吸力 28
2-5.2 土壤水分特徵曲線 30
第三章 板岩區案例概況 33
3-1 臺灣板岩區工程特性 33
3-2 極端降雨設計雨型 39
3-3 調查案例概況 47
3-3.1 臺中市和平區松茂地區之潛在大規模崩坍地 47
3-3.2 臺東縣金峰鄉新興村之潛在大規模崩塌地 54
第四章 研究案例分析 61
4-1 松茂崩塌地 61
4-1.1 數值模型剖面建立與邊界條件設定 61
4-1.2 降雨引致地下水位變動之滲流分析 63
4-1.3 降雨引致地引致邊坡穩定耦合分析 66
4-1.4 設計雨型於邊坡地滑探討 71
4-2 新興崩塌地 77
4-2.1 數值模型剖面建立與邊界條件設定 77
4-2.2 降雨引致地下水位抬升與洩降之滲流分析 77
4-2.3 降雨引致地引致邊坡穩定耦合分析 80
4-2.4 設計雨型於邊坡地滑探討 85
4-3 板岩邊坡破壞管理值 91
4-3.1 松茂崩塌地 92
4-3.2 新興崩塌地 97
第五章 結論與建議 106
5-1 結論 106
5-2 建議 107
參考文獻 108


Aleotti P. (2004). A warming system for rainfall-induced shallow failures. Engineering Geology, 73(3-4), 247-265.
Bonzanigo L., Eberhardt E., Loew S. (2007). Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Canada Geotechnical Journal, 44, 1157–1180.
Chigira, M. (1992). Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32, 157–184.
Chigira, M. (1994). Deep-seated rockslide–avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Engineering Geology, 38, 221–230.
Chigira, M., Wang W. N., Furuyac, T., Kamaiaet, T. (2003). Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Engineering Geology, 68, 259–273.
Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., and Nishino, K. (2009). Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan. Environmental Geology, 56(7), 1295-1310.
de Lima JLMP, Singh VP (2002). The influence of the pattern of moving rainstorm on overland flow. Advance Water Resource. 25, 817–828.
Fredlund, D. G., and Morgenstern, N. R. (1977). Stress state variables for unsaturated soil. Journal of Geotechnical Engineering, ASCE, GT5, 103, 447-446.
Fredlund, D., Morgenstern, N., and Widger, R. (1978). The shear strength of unsaturated soil. Canadian Geotechnical Journal, 15(3), 313-32.
Fredlund, D.G. and Xing, A. (1994). Equation for the soil-water characteristic curve. Canadian Geotechnical Junrnal, 31, 521-532.
Geo-Slope International Ltd. (2012a). Seepage modeling with SEEP/W, An engineering methodology. July 2012 Edition.
Geo-Slope International Ltd. (2012b). Slope modeling with SEEP/W, An engineering methodology. July 2012 Edition.
Gostelow, P. (1991). Rainfall and landslides, in: Prevention and control of landslides and other mass movements, edited by: Almeida-Teixeira, M. et al., CEC, Bruxels, 139–161.
Green, R.E. and Corey, J.C. (1971). Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Science Society of America Proceedings. 35, 3-8.
IPCC. (2014). Summary for policymakers. In: C.B. Field, V. R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A. N. Levy, S. MacCracken, P.R. Mastrandrea, & L.L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp.1-32). Cambridge, United Kingdom and New York, USA: Cambridge University Press.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910.
J. L. Zˆezere, R. M. Trigo, and I. F. Trigo (2005). Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Sciences, 5, 331–344.
Lee, D. H., Lai, M. H., Wu, J. H., Chi, Y. Y., Ko, W. T., Lee, B. L. (2013). Slope management criteria for Alishan Highway based on database of heavy rainfall-induced slope failures. Engineering Geology, 162, 97-107.
Tsai, T. L. (2008). The influence of rainstorm pattern on shallow landslide. Environmental Geology, 53(7), 1563-1569.
Tsou, C. Y., Feng, Z. Y. and Chigira M. (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127, 166-178.
Vallet A., Bertrand C., Fabbri O., Mudry J. (2015). An efficient workflow to accurately compute groundwater recharge for the study of rainfall-triggered deep-seated landslides, application to the Se´chilienne unstable slope (western Alps). Hydrol Earth Syst Sci, 19, 427–449.
van Asch, T., Buma, J., and VanBeek, L. (1999). A view on some hydrological triggering systems in landslides, Geomorphology, 30(1–2), 25–32.
van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892-898.
Wu, J. H., Chen, J. H., Lu, C. W. (2013). Investigation of the Hsien-du-Shan rock avalanche caused by typhoon Morakot in 2009 at Kaohsiung county, Taiwan. International Journal of Rock Mechanics & Mining Sciences, 60, 148–159.
Zhang W.J., Chen Y.M., Zhan L.T. (2006). Loading/unloading response ratio theory applied in predicting deepseated landslides triggering. Engineer Geology, 82, 234–240.
千木良雅弘 (2011)。「大規模崩塌潛感區,科技圖書有限公司」,台灣,台北。
公路邊坡工程設計規範(2015)。交通部網站https://www.motc.gov.tw,2018年6月擷取。
日本國土交通省河川局防砂部氣象廳 (2005)。「日本政府與各縣市臨界降雨量線訂定講義」。日本:國土交通省。
水土保持技術規範 (2014)。水土保持局網站https://law.coa.gov.tw/GLRSnewsout/LawContent.aspx?id=FL014521,2018年6月擷取。
王金山、鍾明劍、冀樹勇 (2011)。「降雨誘發崩塌地滑動之監測回饋分析與預警應用探討」,中興工程,第110期,第27-40頁。
江宜樺 (2011)。「地方政府防災策略與決策思維」,內政部。
行政院農業委員會水土保持局 (2015)。「重大土石災情報告」,行政院農業委員會水土保持局土石流防災資訊網。取自 http://gis.swcb.gov.tw/disasterInfo/ImpDisasterReport.aspx。
何學承 (2017)。「106年度萬山、寶山、來義等八處大規模崩塌地區監測計畫 成果報告書」,行政院農業委員會水土保持局。
李德河、陳柏穎、吳建宏、張育誠、張耕逢 (2012)。「水庫集水區公路邊坡安全與降雨關係之研究」,2012岩盤工程研討會論文集,苗栗。
林秉賢 (2015)。「臺東新興潛在大規模崩塌地區調查監測計畫(1/2) 成果報告」,行政院農業委員會水土保持局。
林美聆、陳彥澄 (2014)。「應用光達地形資料於莫拉克災後陳有蘭溪流域崩塌與土石流地質敏感地區判釋與分析」,航測及遙測學刊,第18卷,第2期,第129-143頁。
林榮潤 (2011)。「臺灣的岩石風化與土壤形成之特性」,地質,第30卷,第2期,第78-83頁。
侯進雄、費立沅 (2012)。「台灣大規模崩塌調查的發展現況」,地質專題,第一期,第40-44頁。
春山下川 (1973)。「昭和47年6、7月豪雨にとって鹿児島縣內に發生した斜面崩壞の实態」,土と基礎(間接引用)。
紀宗吉,林錫宏,蘇品如 (2008)。「廬山新樂克風災探索」,地質期刊,第27卷,第4期,頁77-82。
財團法人中興土木科技發展文教基金會 (2014)。「103年藤枝林道3.5k及九份二山崩塌地監測與後續因應措施研究計畫」,行政院農業委員會水土保持局。
財團法人中興工程顧問社 (2012a)。「大梨山地區山坡地整體調查規劃成果報告書」,行政院農業委員會水土保持局。
財團法人中興工程顧問社 (2012b)。「強化豪雨引致山崩之即時動態潛勢評估與警戒模式發展(2/4) 」,經濟部中央地質調查所。
國立臺灣科技大學營建工程系 (2009)。「水庫集水區邊坡崩塌機制及整治策略--子計畫:水庫集水區不飽和土壤邊坡淺層崩塌機制及分析模式之研究(I)」,行政院國家科學委員會專題研究計畫。
國家災害防救科技中心 (2016)。「臺灣氣候變遷災害衝擊風險評估報告」。行政法人國家災害防救科技中心。新北市。
教育雲台灣變質岩的分布(2018)。https://market.cloud.edu.tw/content/senior/earth/tp_ml/twrock/class3/location31.htm,2018年六月擷取。
許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭等(2011)。「臺灣氣候變遷科學報告2011」。臺北市:行政院國家科學委員會。
陳樹群 (2010)。「土砂災害與深層崩塌機制探討」,行政院中央災害防救會報,台灣,台北。
陳聯光 (2012)。「大規模崩塌災害防治推動策略規劃」,極端氣候的挑戰-大規模山崩防災研討會議手冊,第I-1-I-14頁,台灣,台北。
陳韻如、陳偉柏、林又青、劉佩鈴、施虹如、蘇元風、陳永明、張志新(2014)。「氣候變遷衝擊下災害風險地圖」,國家災害防救科技中心技術報告NCDR 102-T17。
曾仁郁 (2013)。「不飽和土壤水分特徵曲線特性及土壤初始水頭對邊坡穩定之影響,國立高雄第一科技大學」,碩士論文。
曾致仁 (2017)。「降雨引致邊坡地下水位變動及作為邊坡崩壞預警指標之研究」,國立成功大學土木工程系碩士論文。
童慶斌、國家災害防救科技中心、李培芬、林幸助、李明旭、盧虎生、蘇慧貞、張靜貞、詹士樑、許泰文、李河清等 (2017)。「臺灣氣候變遷科學報告2017 -衝擊與調適面向」,國家災害防救科技中心。新北市。
經濟部中央地質調查所 (2000)。「臺灣地質圖〔1:500,000〕〔2000年〕」,臺灣地質圖,新北市中和區。
潘安士、張光宗、林錫宏、錢滄海 (2011)。「以有限元素法分析板岩邊坡潛移」。
潘國樑 (2007)。「工程地質學導論」,科技圖書股份有限公司,臺北。
鄭佳元 (2009)。「降雨誘發淺層坡地崩塌之研究」,國立成功大學資源工程學系碩士論文。
龔楚媖、顏葆琳、李宗融、吳宜昭、于宜強 (2015)。「《台灣極端降雨事件: 1992 -2013年重要事件彙整 》專書導讀」。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top