|
1.K. Odashima, M. Kotato, M. Sugawara, Y. Umezawa, Voltammetric study on a condensed monolayer of a long alkyl cyclodextrin derivative as a channel mimetic sensing membrane, Anal. Chem. 65 (1993) 927-930. 2.J. Wang, X. Cai, G. Rivas, H. Shiraishi, P. A. M. Farias, N. Dontha, DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus, Anal. Chem. 68 (1996) 2629-2634. 3.J. Wang, M. S. Lin, Mixed plant tissue-carbon paste bioelectrode, Anal. Chem. 60 (1988)1545-1548. 4.M. S. Lin, S. Y. Tham, G. A. Rechnitz, Pineapple-tissue based bioelectrode for the determination of hydrogen peroxide, Electroanalysis 2 (1990) 511-515. 5.S. Leth, S. Maltoni, R. Simkus, B. Mattiasson, P. Corbisier, Ingo Klimant, O. S. Wolfbeis, E. Csoregi, Engineered bacteria based biosensors for monitoring bioavailable heavy metals, Electroanalysis 14 (2002)35-42. 6.V. T.-Duret, G. Reach, M. N. Gangnerau, F. Lemonnier, J. C. Klein, Y. Zhang, Y. Hu, G. S. Wilson, Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood, Anal. Chem. 68 (1996) 3822-3826. 7.X. Chu, X. Zhu, Y. Dong, T. Chen, M. Ye, W. Sun, An Amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods, J. Electroanal. Chem. 676 (2012) 20-26. 8.E. Akyilmaz, M. K. Sezginturk, E. Dinckaya, A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine, Talanta 61 (2003) 73-79. 9.T. Hoshi, H. Saiki, J. Anzai , Amperometric uric acid sensors based on polyelectrolyte multilayer films, Talanta 61 (2003) 363-368 10.M. A. Arnold, Enzyme-based fiber optic sensor, Anal. Chem. 57 (1985) 565-566. 11.G. Chee, Y. Nomura, K. Ikebukuro, I. Karube, Optical fiber biosensor for the determination of low biochemical oxygen demand, Biosens. Bioelectron. 15 (2000) 371-376 12.G. Urban, H. Kamper, A. Jachimowicz, F. Kohl, H. Kuttner, F. Olcaytug, P. Goiser, The construction of microcalorimetric biosensors by use of high resolution thin-film thermistors, Biosens. Bioelectron. 6 (1991) 275-280. 13.M. Shimohigoshi, K. Yokoyama, I. Karube, Development of a bio-thermochip and its application for the detection of glucose in urine, Anal. Chim. Acta 303 (1995) 295-299. 14.A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, Enzyme monolayer-functionalized field-effect transistors for biosensor applications, Sens. Actuators, B 70 (2000) 222-231. 15.B. L. Allen, P. D. Kichambare, A. Star, Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater. 19(2007) 1439-1451. 16.L. C. Clark, Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29-45. 17.M. Espinosa, P. Atanasov, E. Wilkins, Development of a disposable organophosphate biosensor, Electroanalysis 11 (1999) 1055-1062. 18.D. Carelli, D. Centonze, C. Palermo, M. Quinto, T. Rotunno, An interference free amperometric biosensor for the detection of biogenic amines in food products, Biosens. Bioelectron. 23 (2007) 640-647. 19.J. Masud, M. T. Alam, M. R. Miah, T. Okajima, T. Ohsaka, Enhanced electrooxidation of formic acid at Ta2O5-modified Pt electrode, Electrochem. Commun. 13 (2011) 86-89. 20.S. S. Mahapatra, A. Dutta, J. Datta, Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium, Int. J. Hydrogen Energy 36 (2011) 14873-14883. 21.R. Rawal, S. Chawla, Devender, C. S. Pundir, An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract, Enzyme Microb. Technol. 51 (2012) 179-185. 22.F. Matsumoto, S. Uesugi, N. Koura, T. Ohsaka, Enhancement of electrochemical reduction of hydrogen peroxide and observation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode, J. Electroanal. Chem. 549 (2003) 71-80. 23.Y. Zhang, J. Zhang , H. Wu , S. Guo, J. Zhang, Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds, J. Electroanal. Chem. 81 (2012) 49-55. 24.T. J. Li, C. Y. Lin, A. Balamurugan, C. W. Kung, J. Y. Wang, C. W. Hu, C. C. Wang, P. Y. Chen, R. Vittal, K. C. Ho, Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate, Anal. Chim. Acta 737 (2012) 55-63. 25.R. W. Murray, A. G. Ewing, R. A. Durst, Chemically modified electrodes molecular design for electroanalysis, Anal. Chem. 59 (1987) 379A-390A. 26.G. E. Stoner, S. Srinivasan, Adsorption of blood proteins on metals using capacitance techniques, J. Phys. Chem. 74 (1970) 1088-1094. 27.G. Decher, B. Lehr, K. Lowack, Y. Lvov, J. Schmitt, New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA, Biosens. Bioelectron. 9 (1994) 677-684. 28.E. M. I. Mala Ekanayake, D. M. G. Preethichandra, K. Kaneto, Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors, Biosens. Bioelectron. 23 (2007) 107-113. 29.H. Li , S. H. Park , J. H. Reif , T. H. LaBean , H. Yan, DNA-templated self-assembly of protein and nanoparticle linear arrays, J. Am. Chem. Soc. 126 (2004) 418-419. 30.R. F. Lane, A. T. Hubbard, Electrochemistry of chemisorbed molecules. II. Influence of charged chemisorbed molecules on the electrode reactions of platinum complexes, J. Phys. Chem. 77 (1973) 1411-1421. 31.E. Mazzotta, R. A. Picca, C. Malitesta, S. A. Piletsky, E. V. Piletska, Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine, Biosens. Bioelectron. 23 (2008) 1152-1156. 32.A. Amine, J. M. Kauffmann, Preparation and characterization of a fragile enzyme immobilized carbon paste electrode, Bioelectrochem. Bioenerg. 28 (1992) 117-125. 33.S. Yabuki, F. Mizutani, Modifications to a carbon paste glucose-sensing enzyme electrode and a reduction in the electrochemical interference from L-ascorbate, Biosens. Bioelectron. 10 (1995) 353-358. 34.B. D. MacCraith, C. M. McDonagh, G. O''Keeffe, A. K. McEvoy, T. Butler, F. R. Sheridan, Sol-gel coatings for optical chemical sensors and biosensors, Sens. Actuators, B 29 (1995) 51-57. 35.Z. Wang ,X. Hao, Z. Zhang , S. Liu , Z. Liang , G. Guan, One-step unipolar pulse electrodeposition of nickel hexacyanoferrate/chitosan/carbon nanotubes film and its application in hydrogen peroxide sensor, Sens. Actuators, B 162 (2012) 353-360. 36.B. Fang, Y. Feng, G. Wang, C. Zhang, A. Gu, M. Liu, A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes, Microchimica Acta 173 (2011) 27-32. 37.S. Uchiyama, H. Sakamoto, Immobilization of uricase to gas diffusion carbon felt by electropolymerization of aniline and its application as an enzyme reactor for uric acid sensor, Talanta 44 (1997) 1435-1439. 38.M. Yasuzawa, A. Kunugi, Properties of glucose sensors prepared by the electropolymerization of a positively charged pyrrole derivative, Electrochem. Commun. 1 (1999) 459-462. 39.S. J. Updike, G. P. Hicks, The enzyme electrode, Nature 214 (1967) 986-988. 40.J. Wang, M. S. Lin, Mixed plant tissue carbon paste bioelectrode, Anal. Chem. 60 (1988) 1545–1548. 41.M. S. Lin, W. C. Shih, Chromium hexacyanoferrate based glucose biosensor, Anal. Chim. Acta 381 (1999) 183-189. 42.R. Yang, C. Ruan, W. Dai, J. Deng, J. Kong, Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine), Electrochim. Acta, 44 (1999) 1585-1596. 43.L. Wu, M. McIntosh, X. Zhang, H. Ju, Amperometric sensor for ethanol based on one-step electropolymerization of thionine–carbon nanofiber nanocomposite containing alcohol oxidase, Talanta 74 (2007) 387-392. 44.L. H. H. Olde Damink, P. J. Dijkstra, M. J. A. Van Luyn, P. B. Van Wachem, P. Nieuwenhuis, J. Feijen, Glutaraldehyde as a crosslinking agent for collagen-based biomaterials, J. Mater. Sci. Mater. Med. 6 (1995) 460-4720. 45.S. Kuwabata, T. Nakaminami, S. Ito, H. Yoneyama, Preparation and properties of amperometric uric acid sensors, Sens. Actuators, B 52 (1998) 72-77. 46.T. Ahuja , V. K. Tanwar , S. K. Mishra , D. Kumar, A. M. Biradar, Rajesh, Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor, J. Nanosci. Nanotechnol. 11 (2011) 4692-701. 47.T. Q. Huy, N. T. H. Hanh, N. T. Thuy, P. V. Chung, P. T. Nga, M. A. Tuan, A novel biosensor based on serum antibody immobilization for rapid detection of viral antigens, Talanta 86 (2011) 271-277. 48.Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles, Biosens. Bioelectron. 43 (2013) 155-159. 49.S. Felix, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, A. N. Grace, Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation, J. Chem. Sci. 126 (2014) 25-32. 50.B. Ballarin, C. J. Brumlik, D. R. Lawson, W. Liang, L. S. V. Dyke, C. R. Martin, Chemical sensors based on ultrathin-film composite membranes-a new concept in sensor design, Anal. Chem. 64 (1992) 2647-2651. 51.G. Wulff, Enzyme-like catalysis by molecularly imprinted polymers, Chem. Rev. 102 (2002) 1-28. 52.N. Lavignac, C. J. Allender, K. R. Brain, Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays, Anal. Chim. Acta 510 (2004) 139-145. 53.K. Haupt, K. Mosbach, Molecularly imprinted polymers and their use in biomimetic sensor, Chem. Rev. 100 (2000) 2495-2504. 54.R. Shoji, T. Takeuchi, I. Kubo, Atrazine sensor based on molecularly imprinted polymer-modified gold electrode, Anal. Chem. 75 (2003) 4882-4886. 55.X. Shen, Y. Cui, Y. Pang, H. Qian, Pre-concentration and in situ electrochemical sensing of 1-hydroxypyrene on an electrodeposited poly (3-methylthiophene) film modified electrode, J. Electroanal. Chem. 667 (2012) 1-6. 56.R. Groning, I. Danco, R. S. Muller, Development of sensor elements to control drug release from capsular drug delivery systems, Int. J. Pharm. 340 (2007) 61-64. 57.H. K. Choi, D. B. Mount, A. M. Reginato, Pathogenesis of Gout, Annals of Internal Medicine, 143 (2005)499-516. 58.G. Nuki, Human purine metabolism: some recent advances and relationships with immunodeficiency, Ann. Rheum. Dis. 42 (1983) 8-11. 59.D, Lakshmi, M. J. Whitcombe, F. Davis, P. S. Sharma, B. B. Prasad, Electrochemical detection of uric acid in mixed and clinical samples: a review, Electroanalysis 23 (2011) 305-320. 60.P. Singh, S. Khan, R. K. Mittal, Prevalence of hyperuricemia at nepalgunj medical college, banke, nepal, World J. Med. Sci. 8 (2013) 52-55. 61.K. Chizyński, M. Rozycka, Hyperuricemia, Pol. Merkur. Lekarski. 19 (2005) 693-696. 62.M. Chonchol, M. G. Shlipak, R. Katz, M. J. Sarnak , A. B. Newman , D. S. Siscovick , B. Kestenbaum , J. K. Carney , L. F. Fried, Relationship of uric acid with progression of kidney disease, Am. J. Kidney Dis. 50 (2007) 239-247. 63.M. Madero, M. J. Sarnak, X. Wang, T. Greene, G. J. Beck, J. W. Kusek, A. J. Collins, A. S. Levey, V. Menon ,Uric acid and long-term outcomes in CKD, Am. J. Kidney Dis. 53 (2009) 796-803. 64.T. R. Merriman, N. Dalbeth, The genetic basis of hyperuricaemia and gout, Joint Bone Spine 78 (2011) 35-40. 65.E.W. Campion, R. J. Glynn, L. O. DeLabry, Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study, Am. J. Med. 82 (1987) 421-426. 66. A. T. Eggebeen, Gout: An Update, Am. Fam. Physician. 76 (2007) 801-808. 67.N. Schlesinger, Diagnosing and treating gout: a review to aid primary care physicians, Postgrad Med. 122 (2010)157-161. 68.J. D. Wright, A. B. Pinto, Clinical manifestations and treatment of gout, Prim. Care Update Ob Gyns 10 (2003)19-23. 69.H. A. Jinnah, D. J. Schretlen, Reply: Attenuated variants of Lesch–Nyhan disease: the case of King James VI/I, Brain 133(2010) e154. 70.M. Lesch, W. L. Nyhan, A familial disorder of uric acid metabolism and central nervous system function, The American Journal of Medicine 36 (1964) 561-570. 71.W. L. Nyhan, LESCH-Nyhan disease, Journal of the History of the Neurosciences: Basic and Clinical Perspectives 14 (2005) 1-10. 72.W. L. Nyhan, Lesch-Nyhan disease and related disorders of purine metabolism, TZU Chi Med. J. 19 (2007) 105-108. 73.W. L. Nyhan, Behavior in the Lesch-Nyhan syndrome, Journal of autism and childhood schizophrenia 6 (1976) 235-252. 74.F. A. Mahomed, On chronic Bright''s disease, and its essential symptoms. The Lancet 113 (1879) 399-401. 75.T. Isik, E. Ayhan, M. Ergelen, H. Uyarel, Uric acid: A novel prognostic marker for cardiovascular disease, Int. J. Cardiol. 156 (2012) 328-329. 76.G. Silbernagel, M. M. Hoffmann, T. B. Grammer , B. O. Boehm, W. Marz, Uric acid is predictive of cardiovascular mortality and sudden cardiac death in subjects referred for coronary angiography, Nutr. Metab. Cardiovasc. Dis, 23 (2013) 46-52. 77.T. Nakagawa, H. Hu, S. Zharikov, K. R. Tuttle, R. A. Short, O. Glushakova, X. Ouyang, D. I. Feig, E. R. Block, J. H. Acosta, J. M. Patel, R. J. Johnson, A causal role for uric acid in fructose-induced metabolic syndrome, Am. J. Physiol. Renal. Physiol. 290 (2005) F625-F631. 78.C. Y. Pak, Medical stone management: 35 years of advances, J. Urol. 180 (2008) 813-819. 79.G. S. Marchini, C. Sarkissian, D. Tian, S. Gebreselassie, M. Monga, Gout, stone composition and urinary stone risk: A matched case comparative study, J. Urol. 189 (2013) 1334-1339. 80.S. H. Heo, S. H. Lee, High levels of serum uric acid are associated with silent brain infarction, J. Neurol. Sci. 297 (2010) 6-10. 81.F. Grases, A. Costa-Bauza, M. Ramis, V. Montesinos, A. Conte, Simple classification of renal calculi closely related to their micromorphology and etiology, Clin Chim Acta. 322 (2002) 29-36. 82.G. Bugdayci, Y. Balaban, O. Sahin, Causes of hypouricemia among outpatients, Lab Medicine 39 (2008) 550-552. 83.K. Ogino, I. Hisatome, M. Saitoh, J. Miyamoto, R. Ishiko, J. Hasegawa, H. Kotake, H. Mashiba, Clinical significance of hypouricemia in hospitalized patients, J. Med. 22 (1991)76-82. 84.G. Toncev, B. Milicic, S. Toncev, G. Samardzic, Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood–brain barrier dysfunction, Eur. J. Neurol. 9 (2002) 221-226. 85.M. Pan , H. Gao , L. Long , Y. Xu , M. Liu , J. Zou , A. Wu , X. Wei. X. Chen, B. Tang, Q. Wang, Serum uric acid in patients with Parkinson''s disease and vascular parkinsonism: a cross-sectional study, Neuroimmunomodulation. 20 (2013) 19-28. 86.T. S. Kim, C. U. Pae, S. J. Yoon, W. Y. Jang, N. J. Lee, J. J. Kim, S. J. Lee, C. Lee, I. H. Paik, C. U. Lee, Decreased plasma antioxidants in patients with Alzheimer''s disease, Int. J. Geriatr. Psychiatry 21 (2006) 344-348. 87.M. C. Polidori, P. Mattioli, S. Aldred, R. Cecchetti, W. Stahl, H. Griffiths, U. Senin, H. Sies, P. Mecocci, Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: Relevance to Alzheimer disease and vascular dementia, Dement. Geriatr. Cogn. Disord. 18 (2004) 265-270. 88.B. N. Ames, R. Cathcart, E. Schwiers, P. Hochstein, Uric acid provides an antioxidant defense in humans against, Proc. Natl. Acad. Sci. USA 78 (1981) 6858-6862. 89.M. Boban, D. Modun, Uric acid and antioxidant effects of wine, Croat. Med. J. 51 (2010) 16-22. 90.T. R. Offer, Centr. Physiol. 8 (1894) 801. 91.M. Nanjo, G. G. Guilbault, Enzyme electrode sensing oxygen for uric acid in serum and urine, Anal. Chem. 46 (1974) 1769-1772. 92.J. Galban, Y. Andreu, M. J. Almenara, S. de Marcos, J. R. Castillo, Direct determination of uric acid in serum by a fluorometric - enzymatic method based on uricase, Talanta 54 (2001) 847-854. 93.C. S. Higgens, I. K. Moss, J. T. Scott, Comparison of plasma and urinary concentrations of uric acid measured by the colorimetric phosphotungstate and enzymatic uricase methods, Ann. Rheum. Dis. 42 (1983) 84-85. 94.M. B. Blauch, F. C. Koch, A new method for the determination of uric acid in blood, with uricase, J. Biol. Chem. 130 (1939) 443-454. 95.D. L. Rocha, F. R. P. Rocha, A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine, Microchem. J. 94 (2010) 53-59. 96.M. R. Moghadam, S. Dadfarnia, A. M. Shabani, P. Shahbazikhah, Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine, Anal. Biochem. 410 (2011) 289-295. 97.K. Lorentz, W. Berndt, Enzymic determination of uric acid by a colorimetric method, Anal. Biochem. 18 (1967) 58-63. 98.D. Martinez-Perez, M. L. Ferrer, C. R. Mateo, A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids, Anal. Biochem. 322 (2003) 238-242. 99.R. C. Trivedi, L. Rebar, K. Desai, L. J. Stong, New ultraviolet (340 nm) method for assay of uric acid in serum or plasma, Clin. Chem. 24 (1978) 562-566. 100.T. M. Freeman, W. R. Seitz, Chemiluminescence fiber optic probe for hydrogen peroxide based on the luminol reaction, Anal. Chem. 50 (1978) 1242-1246. 101.Z. Li, M. Feng, J. Lu, KMnO4–octylphenyl polygylcol, ether chemiluminescence system for flow injection analysis of uric acid in urine, Microchem. J. 59 (1998) 278-283. 102.H. C. Hong, H. J. Huang, Flow injection analysis of uric acid with a uricase- and horseradish peroxidase-coupled Sepharose column based luminol chemiluminescence system, Anal. Chim. Acta 499 (2003) 41-46. 103.S. Zhao, J. Wang, F. Ye, Y. M. Liu, Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection, Anal. Biochem. 378 (2008) 127-131. 104.H. Kubo, A. Toriba, Chemiluminescence flow injection analysis of reducing agents based on the luminol reaction, Anal. Chim. Acta 353 (1997) 345-349. 105.J. Yu, S. Wang, L. Ge, S. Ge, A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination, Biosens. Bioelectron. 26 (2011) 3284-3289. 106.O. C. Ingebretsen, J. Borgen, M. Farstad, Uric acid determinations: Reversed-phase liquid chromatography with ultraviolet detection compared with kinetic and equilibrium adaptations of the uricase method, Clin. Chem. 28 (1982) 496-498. 107.N. Cooper, R. Khosravan, C. Erdmanna, J. Fiene, J. W. Lee, Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies, J. Chromatogr. B 837 (2006) 1-10. 108.R. Kanďar, P. Drabkova, R. Hampl, The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection, J. Chromatogr. B 879 (2011) 2834-2839. 109.J. Perello, P. Sanchis, Felix Grases, Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry, J. Chromatogr. B 824 (2005) 175-180. 110.R. Ferin, M. L. Pavao, J. Baptista, Rapid, sensitive and simultaneous determination of ascorbic and uric acids in human plasma by ion-exclusion HPLC-UV, Clin. Biochem. 46 (2013) 665-669. 111.G. Barja de Quiroga , M. Lopez-Torres , R. Perez-Campo , C. Rojas, Simultaneous determination of two antioxidants, uric and ascorbic acid, in animal tissue by high-performance liquid chromatography, Anal. Biochem. 199 (1991) 81-85. 112.T. Seki, K.Yamaji, Y. Orita, S. Moriguchi, A. Shinoda, Simultaneous determination of uric acid and creatinine in biological fluids by column-switching liquid chromatography with ultraviolet detection, J. Chromatogr. A 730 (1996) 139-145. 113.X. B. Chen, A. G. Calder, P. Prasitkusol, D. J. Kyle , M. C. N. Jayasuriya, Determination of 15N isotopic enrichment and concentrations of allantoin and uric acid in urine by gas chromatography/mass spectrometry, J. Mass Spectrom. 33 (1998) 130-137. 114.T. Grune, G. A. Ross, H. Schmidt, W. Siems, D. Perrett, Optimized separation of purine bases and nucleosides in human cord plasma by capillary zone electrophoresis, J. Chromatogr. 636 (1993) 105-111. 115.M. L. Cheng, T. Z. Liu, F. J. Lu, D. T. Chiu, Simultaneous detection of vitamin C and uric acid by capillary electrophoresis in plasma of diabetes and in aqueous humor in acute anterior uveitis, Clin. Biochem.32 (1999) 473-476. 116.S. P. Wang, C. S. Liao, Comparison of ion-pair chromatography and capillary zone electrophoresis for the assay of organic acids as markers of abnormal metabolism, J. Chromatogr. A 1051 (2004) 213-219. 117.C. Masson, J. H. T. Luong, A. L. Nguyen, Analyses of uric acid in urine and reconstituted serum by capillary electrophoresis, Anal. Lett. 24 (1991) 377-389. 118.M. Pizzichini, L. Arezzini, C. Billarelli, F. Carlucci, L. Terzuoli, Determination and separation of allantoin, uric acid, hypoxanthine, and xanthine by capillary zone electrophoresis, Adv. Exp. Med. Biol. 431 (1998) 797-800. 119.Y. Guan, T. Wu, J. Ye, Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection potential application in fast diagnosis of renal disease, J. Chromatogr. B 821 (2005) 229-234. 120.Y. Guan, Q. Chu, J. Ye, Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: Potential application in fast diagnosis of gout, Anal. Bioanal. Chem. 380 (2004) 913-917. 121.X. Yao, Y. Wang, G. Chen, Simultaneous determination of aminothiols, ascorbic acid and uric acid in biological samples by capillary electrophoresis with electrochemical detection, Biomed. Chromatogr. 21 (2007) 520-526. 122.J. L. Boughton, B. W. Robinson, T. G. Strein, Determination of uric acid in human serum by capillary electrophoresis with polarity reversal and electrochemical detection, Electrophoresis. 23 (2002) 3705-3710. 123.J. C. Fanguy, C. S. Henry, The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection, Electrophoresis. 23 (2002) 767-773. 124.H. L. Lee, S. C. Chen, Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum, Talanta 64 (2004) 750-757. 125.W. Ren, H. Qun Luo, N. B. Li, Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid, Biosens. Bioelectron. 21 (2006) 1086-1092. 126.R. M. A. Tehrani, S. Ab Ghani, Voltammetric analysis of uric acid by zinc-nickel nanoalloy coated composite graphite, Sens. Actuators, B 145 (2010) 20-24. 127.A. A. Ensafi, M. Taei, T. Khayamian , Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(p-xylenolsulfonephthalein) modified glassy carbon electrode, Colloids Surf B Biointerfaces. 79 (2010) 480-487. 128.F. Zhang, Z. Wang, Y. Zhang, Z. Zheng, C. Wang, Y. Du, W. Ye, Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(L-arginine)/graphene composite film modified electrode, Talanta 93 (2012) 320-325. 129.J. Wang, W. D. Zhang, Sputtering deposition of gold nanoparticles onto vertically aligned carbon nanotubes for electroanalysis of uric acid, J. Electroanal. Chem. 654 (2011) 79-84. 130.X. Tian, C. Cheng, H. Yuan, J. Du, D. Xiao, S. Xie, M. M. Choi, Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry, Talanta 93 (2012) 79-85. 131.H. Ernst, M. Knoll, Electrochemical characterisation of uric acid and ascorbic acid at a platinum electrode, Anal. Chim. Acta 449 (2001) 129-134. 132.M. A. F. Elmosallamy, R. A. Mohamed, A new potentiometric membrane sensor responsive to uric acid, Anal. Lett. 30(1997) 2175-2187. 133.X. Cai, K. Kalcher, C. Neuhold, B. Ogorevc, An improved voltammetric method for the determination of trace amounts of uric acid with electrochemically pretreated carbon paste electrodes, Talanta 41(1994) 407-413. 134.J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, F. S. Sheu, Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode, Electroanalysis. 15 (2003) 1693-1698. 135.A. Liu, I. Honma, H. Zhou, Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode, Biosens. Bioelectron. 23 (2007) 74-80. 136.J. M. Zen, J. S. Tang, Square-wave voltammetric determination of uric acid by catalytic oxidation at a perfluorosulfonated ionomer ruthenium oxide pyrochlore chemically modified electrode, Anal. Chem. 67 (1995) 1892-1895. 137.J. C. Chen, H. H. Chung, C.T. Hsu, D. M. Tsai, A. S. Kumar, J. M. Zen, A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood, Sens. Actuators, B 110 (2005) 364-369. 138.M. A. T. Gilmartin, J. P. Hart, Voltammetric and amperometric behaviour of uric acid at bare and surface-modified screen-printed electrodes: Studies towards a disposable uric acid sensor, Analyst 117 (1992) 1299-1303. 139.F. d. A. d. S. Silva, C. B. Lopes, L. T. Kubota, P. R. Lima, M. O. F. Goulart, Poly-xanthurenic acid modified electrodes: An amperometric sensor for the simultaneous determination of ascorbic and uric acids, Sens. Actuators, B 168 (2012) 289-296. 140.S. M. Usman Ali, N. H. Alvia, Z. Ibupoto, O. Nur, M. Willander, B. Danielsson, Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires, Sens. Actuators, B 152 (2011) 241-247. 141.Y. Wanga, Y. Hasebe, Uricase-adsorbed carbon-felt reactor coupled with a peroxidase-modified carbon-felt-based H2O2 detector for highly sensitive amperometric flow determination of uric acid, J. Pharm. Biomed. Anal. 57 (2012) 125-132. 142.Y. C. Luo, J. S. Do, C. C. Liu, An amperometric uric acid biosensor based on modified Ir–C electrode, Biosens. Bioelectron. 22 (2006) 482-488. 143.Y. Q. Zhang, W. D. Shen, R. A. Gu, J. Z., R. Y. Xue, Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane, Anal. Chim. Acta 369 (1998) 123-128. 144.Y. Zhang, G. Wen, Y. Zhou, S. Shuang, C. Dong, M. M. F. Choi , Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane, Biosens. Bioelectron. 22 (2007) 1791-1797. 145.X. Wang, T. Hagiwara, S. Uchiyama, Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor, Anal. Chim. Acta 587 (2007) 41-46. 146.M. A. T. Gilmartin, J. P. Hart, B. J. Birch, Development of amperometric sensors for uric acid based on chemically modified graphite-epoxy resin and screen-printed electrodes containing cobalt phthalocyanine, Analyst 119 (1994)243-252. 147.M. A. T. Gilmartin , J. P. Hart, Novel, reagentless, amperometric biosensor for uric acid based on a chemically modified screen-printed carbon electrode coated with cellulose acetate and uricase, Analyst 119 (1994) 833-840. 148.P. Kanyong, R. M. Pemberton, S. K. Jackson, J. P. Hart, Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis, Anal. Biochem. 428 (2012) 39-43. 149.N. Chauhan, C. S. Pundir, An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite, Anal. Biochem. 413 (2011) 97-103. 150.R. Rawal, S. Chawla, N. Chauhan, T. Dahiya, C. S. Pundir, Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite, Int. J. Biol. Macromol. 50 (2012) 112-118. 151.E. Miland , A. J. M. Ordieres, P. T. Blanco , M. R. Smyth , C. O Fagain, Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric acid, Talanta 43 (1996) 785-796. 152.M. Shimohigoshi, I. Karube, Development of uric acid and oxalic acid sensors using a bio-thermochip, Sens. Actuators, B 30 (1996) 17-21. 153.F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu, Y. Xian, L. Jin, K. Yamamoto, Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Anal. Chim. Acta 519 (2004) 155-160. 154.M. Devaraj, R. K. Deivasigamani, S. Jeyadevan, Enhancement of the electrochemical behavior of CuO nanoleaves on MWCNTs/GC composite film modified electrode for determination of norfloxacin, Colloids Surf B Biointerfaces 102 (2013) 554-561. 155.S. Qu, J. Wang, J. Kong, P. Yang, G. Chen, Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing, Talanta 71 (2007) 1096-1102. 156.A. Salimia, R. Hallaj, S. Soltanian, H. Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles, Anal. Chim. Acta 594 (2007) 24-31. 157.D. Buso, M. Post, C. Cantalini, P. Mulvaney, Al. Martucci, Gold nanoparticle-doped TiO2 semiconductor thin films: Gas sensing properties, Adv. Funct. Mater. 18 (2008) 3843-3849. 158.S. Roy, S. Basu, Improved zinc oxide film for gas sensor applications, Bull. Mater. Sci. 25, (2002) 513-515. 159.D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of Zn-graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys. 132 (2012) 673-681. 160.D. Pietrogiacomi, S. Tuti, M. C. Campa, V. Indovina, Cobalt supported on ZrO2: catalysts characterization and their activity for the reduction of NO with C3H6 in the presence of excess O2, Applied Catalysis B: Environmental 28 (2000) 43-54. 161.Y. W. D. Chen, R. N. Noufi, Electrodeposition of nickel and cobalt oxides onto platinum and graphite electrodes for alkaline water electrolysis, J. Electrochem. Soc. 131 (1984) 731-735. 162.T. Ndlovua, O. A. Arotibaa, S. Sampath, R.W. Krausea, B. B. Mamba, Electroanalysis of copper as a heavy metal pollutant in water using cobalt oxide modified exfoliated graphite electrode, Phys. Chem. Earth 50-52 (2012) 127-131. 163.E. Hosono, S. Fujihara, I. Honma, M. Ichihara, H. Zhou, Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property, J. Power Sources 158 (2006) 779-783. 164.H. Unuma, Y. Saito, K. Watanabe, M. Sugawara, Preparation of Co3O4 thin films by a modified chemical-bath method, Thin Solid Films 468 (2004) 4-7. 165.H. Heli, H. Yadegari, Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization, Electrochim. Acta 55 (2010) 2139-2148. 166.Z. Zhu, X. Li, Y. Zeng, W. Sun, W. Zhu, X. Huang, Application of cobalt oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with Ionic liquid as enhancer, J. Phys. Chem. C 115(2011)12547-12553. 167.C. H. Chen, Y. C. Chen, M. S. Lin, Amperometric determination of NADH with Co3O4 nanosheet modified electrode, Biosens. Bioelectron. 42 (2013) 379-384. 168.K. D. Bhatte, B. M. Bhanage, Synthesis of cobalt oxide nanowires using a glycerol thermal route, Mater. Lett. 96 (2013) 60-62. 169.E. Lester , G. Aksomaityte, J. Li, S. Gomez, J. G. Gonzalez, M. Poliakoff, Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles, Prog. Cryst. Growth Charact. Mater. 58 (2012) 3-13. 170.Y. Teng, S. Yamamoto, Y. Kusano, M. Azuma, Y. Shimakawa, One-pot hydrothermal synthesis of uniformly cubic Co3O4 nanocrystals, Mater. Lett. 64 (2010) 239-242. 171.J. Park, X. Shen, G. Wang, Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres, Sens. Actuators, B 136 (2009) 494-498. 172.Y. Z. Wang, Y. X. Zhao, C. G. Gao, D. S. Liu, Origin of the high activity and stability of Co3O4 in low-temperature CO oxidation, Catal. Lett. 125 (2008) 134-138. 173.J. Jansson, Low-temperature CO Oxidation over Co3O4/Al2O3, J. Catal. 194 (2000) 55-60. 174.H. J. Liu, S. H. Bo, W. J. Cui, F. Li, C. X. Wang, Y. Y. Xia, Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries, Electrochim. Acta 53 (2008) 6497-6503. 175.B. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, Q. Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery, J. Power Sources 195 (2010) 857-861. 176.J. Dong, L. Song, J. J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay, Appl. Mater. Interfaces 6 (2014) 1959-1970. 177.W. Jia, M. Guo, Z. Zheng, T. Yu, E. G. Rodriguez, Y. Wang, Y. Lei, Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection, J. Electroanal. Chem. 625 (2009) 27-32. 178.J. Xie, Y. Huang, Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection, Anal. Methods 3 (2011) 1149-1155. 179.G. Spinolo, S. Ardizzone, S. Trasatti, Surface characterization of Co3O4 electrodes prepared by the sol-gel method, J. Electroanal. Chem. 423 (1997) 49-57. 180.P. S. Patil, L. D. Kadam, C. D. Lokhande, Preparation and characterization of spray pyrolysed cobalt oxide thin Films, Thin Solid Films 272 (1996) 29-32. 181.T. Maruyama, S. Arai, Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, J. Electrochem. Soc. 143 (1996) 1383-1386. 182.H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, Y. S. Yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, J. Power Sources 102 (2001) 167-171. 183.K. Nakaoka, M. Nakayama, K. Ogura, J. Electrochem. Soc. 149 (2002) C159 -C163. 184.Q. Liu, W. M. Zhang, Z. M. Cui, B. Zhang, L. J. Wan, W. G. Song, Aqueous route for mesoporous metal oxides using inorganic metal source and their applications, Microporous Mesoporous Mater. 100 (2007) 233-240. 185.C. Sun, S. Rajasekhara, Y. Chen, J. B. Goodenough, Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties, Chem. Commun. 47 (2011) 12852-12854. 186.T. Chen, X. Li, C. Qiu, W. Zhu, H. Ma, S. Chen, O. Meng, Electrochemical sensing of glucose by carbon cloth-supported Co3O4-PbO2 core-shell nanorod arrays, Biosens. Bioelectron. 53 (2014) 200-206. 187.F. Švegl, B. Orel , Structural and electrochromic properties of Co-Oxide and Co/Al/Si-Oxide films prepared by the sol-gel dip coating technique, J. Sol-Gel Sci. Technol. 8 (1997) 765-769. 188.G. L. Messing, S. C. Zhang, G. V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J. Am. Ceram. Soc.76 (1993) 2707-2726. 189.S. Yan, H. Maeda, K. Kusakabe, S. Morook ,Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation, Ind. Eng. Chem. Res. 33 (1994) 616-622. 190.A. Kafizas, C. J. Carmalt, I. P. Parkin, CVD and precursor chemistry of transition metal nitrides, Coord. Chem. Rev. 257 (2013) 2073-2119. 191.J. B. Wu, Y. Lin, X. H. Xia, J. Y. Xu, Q. Y. Shi, Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film, Electrochim. Acta 56 (2011) 7163-7170. 192.A. S. Bhatt, D. K. Bhat, C. W. Tai, M. S. Santosh, Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles, Mater. Chem. Phys. 125 (2011) 347-350. 193.S. Vijayakumar, A. K. Ponnalagi, S. Nagamuthu, G. Muralidharan, Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors, Electrochim. Acta 106 (2013) 500-505. 194.Y. Ding, L. Xu, C. Chen, X. Shen, S. L. Suib, Syntheses of nanostructures of cobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method, J. Phys. Chem. C 112 (2008) 8177-8183. 195.G. W. Morey, Hydrothermal synthesis, J. Am. Ceram. Soc. 36 (1953) 279-285. 196.H. Wang, L. Zhang, X. Tan, C. M. B. Holt, B. Zahiri, B. C. Olsen, D. Mitlin, Supercapacitive properties of hydrothermally synthesized Co3O4 Nanostructures, J. Phys. Chem. C 115 (2011) 17599-17605. 197.Y. Y. Lyu, S. H. Yi, J. K. Shon, S. Chang, L. S. Pu, S. Y. Lee, J. E. Yie, K. Char, G.D. Stucky, Highly stable mesoporous metal oxides using nano-propping hybrid gemini surfactants, J. M. Kim, J. Am. Chem. Soc. 126 (2004) 2310-2311. 198.G. Bai, H. Dai, J. Deng, Y. Liu, F. Wang, Z. Zhao, W. Qiu, C. T. Au, Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene, Appl. Catal. A: Gen 450 (2013) 42-49. 199.Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach, Mater. Lett. 58 (2004) 3637-3640. 200.H. Kavas, A. Baykal, M. S. Toprak, Y. Koseoğlua, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route, J. Alloys Compd. 479 (2009) 49-55. 201.C. Suna, X. Su, F. Xiao, C. Niu, J. Wang, Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties, Sens. Actuators, B 157 (2011) 681-685. 202.X. Rui, H. Tan, D. Sim, W. Liu, C. Xu, H. H. Hng, R. Yazami, T. M. Lim, Q. Yan ,Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties, J. Power Sources 222 (2013) 97-102. 203.H. T. Zhu, J. Luo, J. K. Liang, G. H. Rao, J. B. Li, J. Y. Zhang, Z. M. Dub, Synthesis and magnetic properties of antiferromagnetic Co3O4 nanoparticles, Physica B 403 (2008) 3141-3145. 204.J. Ballesta-Claver, I. F. Diaz Ortega, M. C. Valencia-Miron, L. F. Capitan-Vallvey, Disposable luminol copolymer-based biosensor for uric acid in urine, Anal. Chim. Acta 702 (2011) 254-261. 205.F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond. A 147 (1934)332-351. 206. X. Liu, M. Wen, J. Li , F. Zhai, J. Ruan,L. Zhang, S. Li, High-yield expression, purification, characterization, and structure determination of tag-free Candida utilis uricase, Appl. Microbiol. Biotechnol. 92 (2011) 529-537. 207.R. A. Kamin, G. S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal. Chem., 52(1980) 1198-1205.
|