跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡誌昇
研究生(外文):Chih-Sheng Tsai
論文名稱:聚苯胺塗佈多孔基材之水體抗菌研究
論文名稱(外文):Antibacterial study of polyaniline coated porous ceramics for water treatment applications
指導教授:王雅玢
指導教授(外文):Ya-Fen Wang
學位類別:碩士
校院名稱:中原大學
系所名稱:生物環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:73
中文關鍵詞:聚苯胺、多孔陶瓷、抗菌率
外文關鍵詞:porous ceramicsPolyanilineantibacterial rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚苯胺結構的多樣性涵蓋物理、磁性、電性等多方面應用價值亦能有效抑制細菌、黴菌及真菌。本實驗利用十二烷基苯磺酸摻雜聚苯胺,主要探討應用於用水系統之抗菌效果,研究分成三大部份: (1)聚苯胺結構鑑定:製備完成之聚苯胺應用FTIR及XRD分析其結構,利用TGA檢測其熱安定性,並採用SEM觀察其微觀結構;(2)聚苯胺塗佈多孔陶瓷基材:利用中華民國國家標準CNS 619/R3013 檢測聚苯胺之吸水率、孔隙率、重量變化及體密度;(3)聚苯胺抗菌測試:分別針對聚苯胺粉體、聚苯胺樹酯與聚苯胺多孔陶瓷基材進行抗菌測試,以大腸桿菌及金黃色葡萄球菌為目標菌進行測試,期望能將此新型的抗菌材料,應用於水體之處理。

聚苯胺粉末抗菌能力,由抑菌圈的實驗結果可以發現其抗菌機制較偏向於接觸式抗菌。在水體之抗菌中,聚苯胺粉末 10 mg/mL 與大腸桿菌、金黃色葡萄球菌(濃度:106 CFU/mL)分別接觸4小時後,可以達到抗菌率99%以上之效果。聚苯胺混合樹酯在JIS Z2801日本非紡織品標準抗菌試驗中,抗菌活性值大腸桿菌及金黃色葡萄球菌分別為3.3及3.8,也就是抗菌率達到了99.99%以上。瓶杯試驗中:聚苯胺多孔陶瓷基材2.4 mg/mL與大腸桿菌及金黃色葡萄球菌 (106 CFU/mL) 分別接觸4小時後,其對大腸桿菌之抗菌率皆有91.7%以上,對金黃色葡萄球菌則在3小時後,其對金黃色葡萄球菌皆有95%以上。在連續式模場測試下:水力停留時間3小時,聚苯胺多孔陶瓷基材24 mg/ml,在4小時抗菌率達到了50.5%,直到24小時抗菌率依舊有64.7%,證明陶瓷多孔陶瓷基材在連續式模場具有潛力的抗菌能力。


Polyaniline is known to possess strong bactericidal properties against a broad range of microorganisms without releasing harmful by-product. The porous ceramichas the advantages of high flexibility to use, easy operation and low maintenance requirement, and high potential application in water supply systems... In this study, polyaniline porous ceramic substrate was developed for the deactivation of Escherichia coli and Staphylococcus aureus in water.
The results showed that a significant inhibition zone was exhibited by polyaniline to comfirm the possible contact antibacterial mechanism. Polyaniline (10 mg/mL) in powder form reached an antibacterial efficiency of 99% against (106 CFU/mL) Escherichia coli and Staphylococcus aureus after 4 hours of contact time. Based on JIS Z2801 test on polyaniline mixed with epoxy resin, the antibacterial activity on Escherichia coli and Staphylococcus aureus were 3.3 and 3.8, respectively, which was referred to an antibacterial efficiency of 99.99%. Polyaniline porous ceramic substrates with a concentration of 100 mg/mL exhibited more than 80.3% antibacterial efficiency while contacting with 106 CFU/mL of Escherichia coli and Staphylococcus aureus for 4 hours. Polyaniline porous ceramic substrates were also investigated on a continuous field experiment with a hydraulic retention time of 3 h, and porous ceramic substrate of 24 mg/mL. The antibacterial efficiency reached 50.5% for 4 hours and increased to 64.7% for 24 hours which verified the significant and stable antibacterial activity of polyaniline porous ceramic substrate.


中文摘要 I
ABSTRACT II
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1前言 1
1.2研究內容 2
第二章 文獻回顧 3
2.1環境水體中致病微生物 3
2.2 大腸桿菌與金黃色葡萄球菌之微生物特性 5
2.3聚苯胺簡介 9
2.3.1 導電高分子 9
2.3.2聚苯胺之發現與分類 10
2.3.3聚苯胺的合成與摻雜 12
2.3.4聚苯胺之應用 13
2.4 多孔陶瓷基材 14
2.4.1多孔陶瓷基材之成材料 14
2.4.2多孔陶瓷基材之特性結構 15
2.5抗菌方法介紹 15
2.5.1抗菌的定義 15
2.5.2 抗菌材料的種類 16
2.5.3抗菌劑之抗菌機制 19
2.6 水處理之常用抗菌方式 20
2.6.1抗菌消毒種類 20
第三章 材料與方法 22
3.1 研究架構 22
3.2實驗材料與設備 24
3.2.1 藥品 24
3.2.2實驗器皿 24
3.2.3研究設備 25
3.3實驗步驟 26
3.3.1合成聚苯胺 26
3.3.2檢測聚苯胺物性及化性 27
3.3.3聚苯胺抗菌試驗 28
3.3.4 JISZ 2801 32
3.3.5 不同樹脂溶於聚苯胺之塗佈多孔陶瓷基材 34
第四章 結果與討論 36
4.1聚苯胺物化基本分析 36
4.1.1 傅立葉紅外線(FT-IR)光譜分析 36
4.1.2 掃描式電子顯微鏡(FE-SEM) 38
4.1.3 X-ray繞射儀XRD 39
4.1.4 熱重分析(TGA) 39
4.1.5聚苯胺之樹酯耐水性測試 40
4.1.6聚苯胺塗佈多孔陶瓷基材 41
4.1.7聚苯胺之環氧樹酯塗佈陶瓷環 43
4.1.8 聚苯胺多孔陶瓷基材之水樣特性檢測 46
4.2抗菌試驗 46
4.2.1 聚苯胺抗菌定性試驗 46
4.2.2 聚苯胺粉末抑菌定量測試 48
4.2.3 JIS z2801 50
4.2.4聚苯胺粉末之水體抗菌定量試驗 51
4.2.5聚苯胺多孔基材之水體抗菌定量試驗 54
4.3聚苯胺多孔陶瓷基材之模場抑菌試驗 58
第五章 結論 60

圖目錄
圖2.1 六大致病性大腸桿菌經由黏膜感染宿主的策略。 6
圖2.2 聚苯胺通式 10
圖2.3 還原重複單位 11
圖2.4 氧化重複單位 11
圖2.5 聚苯胺的各式結構圖 11
圖3.1 研究架構 23
圖 3.2 聚苯胺合成流程圖 26
圖3.3 聚苯胺物化性檢測流程圖 27
圖3.4聚苯胺抗菌濾材之整體流程圖 28
圖3.5.1 聚苯胺多孔陶瓷基材之連續式模場流程圖 31
圖3.6 抗菌試驗JIS Z2801流程圖 33
圖4.1.1界面聚合法所製備聚苯胺之FTIR光譜圖 37
圖4.1.2乳化聚合法所製備聚苯胺之FTIR光譜圖 37
圖4.2微纖維結構聚苯胺SEM之影像圖 38
圖4.5聚苯胺塗佈鋁片耐水測試外觀圖 41
圖4.6 不同條件將聚苯胺塗佈於多孔陶瓷基材前後經超音波震盪對比圖 42
圖4.7不同濃度聚苯胺塗佈同一材質多孔陶瓷基材外觀及剖面圖 44
圖4.8同一濃度塗佈於不同材質多孔陶瓷基材 44
圖4.9紙碇試驗 47
圖4.10 聚苯胺粉末塗佈多孔陶瓷基材抗菌圈試驗 48
圖4.11 不同克重聚苯胺粉末之水體抑制金黃色葡萄球菌菌落數圖 49
圖4.13聚苯胺粉末在不同克重隨著時間抑制金黃色葡萄球菌落生長圖 52
圖4.14聚苯胺粉末在不同克重隨著時間抑制金黃色葡萄球菌落之抗菌時效圖 52
圖4.15聚苯胺粉末在不同克重抑制大腸桿菌落生長圖 53
圖4.16聚苯胺粉末在不同克重抑制大腸桿菌落之抗菌時效圖 54
圖4.17 聚苯胺多孔陶瓷基材在不同數量,隨抑制大腸桿菌落生長。 55
圖4.18聚苯胺多孔陶瓷基材在不同數量,抑制大腸桿菌落之抗菌時效圖。 56
圖4.19 聚苯胺多孔陶瓷基材在不同數量,隨抑制金黃色葡萄球菌落生長。 57
圖4.20 聚苯胺多孔陶瓷基材在不同數量,抑制大腸桿菌落之抗菌時效圖。 58
圖4.21 為經過聚苯胺過濾器後之大腸桿菌去除 59


1.在聚苯胺定性試驗中,聚苯胺抗菌機制屬於接觸式抗菌,故所產生抗菌圈不大,須靠動力使其均勻混合增加與細菌的接觸達到更好抗菌效果。
2.JIS Z2801中聚苯胺混合樹酯後,並不會降低他對細菌的抗菌能力,當聚苯胺樹酯濃度1mg/mL在初始菌液濃度約2*105 CFU/mL中,經過24小時接觸後,大腸桿菌與金黃色葡萄球菌皆達到細菌活性值3.3及3.8,也就是抗菌率達到99.99%以上。
3.聚苯胺粉末在0.5mg /mL 濃度時,在混和均勻之水體中對大腸桿菌與金黃色葡萄球菌皆有良好的抗菌率,菌液濃度約106 CFU/mL,聚苯胺粉末之於大腸桿菌在4小時亦可降低90%以上,金黃色葡萄球菌在2小時便可達到95%。
聚苯胺多孔陶瓷基材之抗菌效果:

1.在封閉批次試驗中聚苯胺多孔陶瓷基材,對大腸桿菌亦擁有不俗的抗菌效果,2.4 mg/ml聚苯胺多孔陶瓷基材(C1)在2小時抗菌率已達到93.4%,6小時抗菌率便99%以上,抗菌效果能遜於粉末,估計在於聚苯胺接觸式抗菌機制。
2.在封閉批次試驗中聚苯胺多孔陶瓷基材,對金黃色葡萄球菌亦擁有不俗的抗菌效果,2.4 mg/ml聚苯胺多孔陶瓷基材(C1)在剛接觸後抗菌率已達到99.99%。
3.在連續式模場抗菌試驗中聚苯胺多孔陶瓷基材,於水力停留時間3小時、多孔陶瓷基材與菌液比為24 mg/ml 下,在4小時抗菌率達到了50.5%,生菌數遠低於純多孔陶瓷基材。

參考文獻
1.R. L. Jooley, I. H. Suffet, Concentration Techniques for Isolation Organic Constituents in Environmental Water Samples. Organic Pollutants in Water, (1987).
2.J. Y. Shimano, A. G. Macdiamid, Polyaniline, a dynamic block copolymer: key to attaining its intrinsic conductivity, J. Syn. Met., 123 (2001) 251-262.
3.J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensor, J. Nat. Mater., 2 (2003) 19-24.
4.M. R. Gizdavic- Nikolaidis, J. R. Bennett, S. Swift, A. J. Easteal, M. Ambrose, Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia 7 (2011) 4204–4209.
5.M. Watanabe, M. Kohnosu, Method and device for producing water have sterilizing activity, Japan Pat: 2000210666A, (2000).
6.R. Narayan, and P. Colombo (ed.), Advances in Bioceramics and Porous Ceramics: Ceramic Engineering and Science Proceedings, John Wiley & Sons, Vol. 29, Issue 7 (2008).
7.WHO, (2003)
8.許昺慕 (2012) 環境水體中自由型阿米巴與退伍軍人桿菌定量方法之研發以及嗜肺性退伍軍人桿菌不同分型法之比較,中正大學: 應用地球物理與環境科學研究所
9.M. Castells, M. Fernandez-Ardevol, J. L. Qiu, A. Sey, Mobile Communication and Society: A Global Perspective, International Journal of Communication 1 (2007), Book Review, 149-155.
10.D. W. K. Acheson, G. T. Keusch, Which shiga toxin-producing types of E. Coli are import ?, ASM News. 62 (1996) 302-306.
11.R. E. Holland, N. Sriranganathan, L. DuPont, Isolation of enterotoxigenic Escherichia coli from a foal with diarrhea, J. Am. Vet. Med. Assoc. 194 (1989) 389-391.
12.潘子明 (1996) 痢疾流行,科學月刊 27:103-111
13.P. M. Griffin, R. V. Tauxe, The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome, Epidemiologic Reviews 13 (1991) 60-98.
14.J. P. Nataro, J. B. Kaper, Diarrheagenic Escherichia coli. Clinical. Microbiology Reviews 11 (1998) 142-201.
15.P. J. Quinn, M. E. Carter, B. K. Markey, B. R. Carter, Staphylococcus species. In: Clinical veterinary microbiology, Wolfe, Virginia, (1994) 118-126.
16.J. Sjodahl, Structural studies on the four repetitive Fc-binding regions in protein A from Staphylococcus aureus, Eur. J. Biochem., 78 (1977) 471-479.
17.S. Kawabata, T. Morita, S. Iwanaga, H. Igarashi, Enzymatic properties of staphylothrombin, an 63 active molecular complex formed between staphylocoagulase and human prothrombin, J. Biochem., 98 (1985) 1603-1614.
18.T. Tomita, Y. Kamio, Molecular biology of the pore-forming cytolysins from Staphylococcusaureus, alpha- and gamma-hemolysins and leukocidin, Biosci. Biotechnol. Biochem. ,61 (1997) 565-572.
19.M. M Dinges, P. M. Orwin, P. M. Schlievert, Exotoxins of Staphylococcus aureus, Clin. Microbiol. Rev., 13 (2000) 16-34.
20.E. Cifrian , A. J. Guidry , C. N. O'Brien , S. C. Nickerson , W.W Marquardt, Adherence of Staphylococcus aureus to cultured bovine mammary epithelial cells, J. Dairy Sci., 77(1994) 970-983.
21.韓建中 (2008) 衍生聚苯胺與水性聚苯胺的合成及其抗腐蝕應用的研究,清華大學:化學所
22.J. C. Chiang, A. G. Macdiarmid, “Polyaniline: Protonic Acid Doping of the Emeraldine Form to the Metallic Regime”, Synthetic Metals, 13 (1986)193-205.
23.T. Ito, H. Shirakawa, S. Ikeda, J. Polym. Sci., Polym. Chem. Ed., 12 (1971).
24.C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett., 39 (1977) 1098.
25.H. Letheby, J. Chem. Soc., 15 (1862) 161.
26.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, W. Wu, S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121 (1985) 173.
27.A. G. MacDiarmid , A. J. Epstein, Faraday Discuss. Chem. Soc., 88 (1989) 317.
28.A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans., 97 (1910) 2388.
29.Y. F. Fong, J.B. Svhlenoff, “Polymerization of aniline using mixed oxidizers”, Polymers, 36 (1995) 636.
30.A. A. Syed, M. K. Dinesan, Talanta, 38 (1991) 815.
31.E. M. Genies, A. Boyle, M. Lapkowski, C. Tsintaris, Synth. Met., 36 (1990) 139.
32.J. P. Travers, J. Chroboczek, F. Devreux, F. Genoud, M. Nechtschein, A. Syed, E. M. Genies, C. Tsintavis, Mol. Cryst. Liq. Cryst., 121 (1985) 195.
33.Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima, T.Kawahgoe, Macromolecular., 21 (1988) 1297.
34.H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Journal of the Chemical Society, Chemical Communications 16 (1977).
35.C. Barbero, M. C. Miras, R. Koetz, O. Haas, Synth. Met., 55 (1993) 1539.
36.H. Tsutsumi, S. Yamashita, T. Oishi, Synth. Met., 85 (1997) 1361.
37.G. Kumar, A. Sivashanmugam, N. Muniyandi, S. K. Dhawan, Synth. Met., 80 (1996) 279.
38.N. Kobayashi, K. Yamada, R. Hirohashi, Electrochem. Acta., 37 (1992) 2101.
39.M. Morita, Poly. Sci., Part B: Polymer Phys., 32 (1994) 231.
40.M. C. Bernard, H. L. Goff, Z. Wen, Synth. Met., 85 (1997) 1347.
41.A. Mostafaei, F. Nasirpouri, “American Coatings Association & Oil and Colour Chemists’ Association”, (2013).
42.M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G. A. Bowmaker, R. P. Cooney, P. A. Kilmartin, Synthetic Metals, 140 (2004).
43.N. Shi, X. Guo, H. Jing, J. Gong, C. Sun, K. Yang, Journal of Materials Science and Technology, 22 (2006).
44.D.T. Seshadri, N.V. Bhat, Indian Journal of Fibre and Textile Research 30 (2005).
45.D.M. Liu (ed.), Porous Ceramic Materials: Fabrication, Characterization, Applications, Trans. Tech. Publications, (1996).
46.R. E. Grim, Clay Mineralogy, McGraw-Hill Inc., New York, 2ND ed, (1968) 55.
47.N. P. Bansal (ed.), Handbook of Ceramic Composites, Kluwer Academic Publishers, (2005).
48.陳建文,"滅菌、消毒與抗菌技術",化學工業,2004
49.N. Ben-Zur, D. M. Goldman, y-Poly Glutamic Acid: A Novel Peptide for skin Care., consmetics&Toiletries., 122 (2007).
50.M. Inoue, R. E. Navarro, M. B. Inoue, Synth. Met. 30 (1989) 199.
51.S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, M. F. Bertino, Chem. Mater., 17 (2005)5941.
52.X. Feng, G. Yang, Q. Xu, W. Hou, J. J. Zhu, Macromol. Rapid Commun., 27 ( 2006)31.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top