|
[1] N. Betzler, R. Niedermeier, and J. Uhlmann, Tree decompositions of graphs: saving memory in dynamic programming, Discrete Optimization 3 (2006) 220-229.
[2] H. L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996) 1305-1317.
[3] E. J. Cockayne, P. A. Jr. Dreyer, S. M., Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Mathmatics 278 (2004) 11-22.
[4] M. S. Chang, Effiecient algorithms for the domination problems on interval and circular-arc graphs, SIAM J. Comput. 27 (1998) 1671-1694.
[5] P. A. Jr. Dreyer, Applications and variations of domination in graphs, Ph.D. Thesis, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 2000.
[6] D. Kratsch, Domination and total domination on asteroidal triple-free graphs, Discrete Applied Mathematics 99 (2000) 111-123.
[7] H. Fernau, Roman domination: A parameterized perspective, SOFSEM 2006, LNCS 3831 (2006).
[8] F. V. Fomin, D. Kratsch, and H. MÄuller, Algorithms for graphs with small octopus, Discrete Applied Mathematics, 134 (2004) 105-128.
[9] F. Nicolai and T. Szymczak, Homogeneous sets and domination: A linear time algorithm for distance-hereditary graphs, Networks 37 (2001) 117-128
[10] J. Guo, R. Niedermeier, and D. Raible, Improved algorithms and complexity results for power domination in graphs, FCT 2005, LNCS 3623 (2005) 172-184.
[11] M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 225-234.
[12] M. A. Henning, Defending the Roman Empire from multiple attacks, Discrete Mathematics 271 (2003) 101-115.
[13] M. A. Henning and S. T. Hedetniemi, Defending the Roman Empire-A new strategy, Discrete Mathematics 266 (2003) 239-251.
[14] C.-H. Hsu, C.-S. Liu, and S.-L. Peng, Roman domination on block graphs, Proceedings of the 22nd Workshop on Combinatorial Mathematics and Computation Theory (2005) 188-191
[15] T. Kloks, Treewidth{Computations and Approximations, LNCS 842, Springer, Berlin, 1994.
[16] T. Kloks, D. Kratsch, C. M. Lee, and J. Liu, Improved bottleneck domination algorithms, Discrete Applied Mathematics 154 (2006) 1578-1592.
[17] J. Kneis, D. Molle, S. Richter, and P. Rossmanith, Parameterized power domination complexity, Information Processing Letters 98 (2006) 145-149.
[18] M. Liedlo®, T. Kloks, J. Liu, and S.-L. Peng, Roman domination over some graph classes, WG 2005, LNCS 3787 (2005) 103-114.
[19] C. S. ReVelle and K. E. Rosing, Defenders imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594.
[20] I. Stewart, Defend the Roman Empire, Scientific American 281 (1999) 136-139.
[21] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced Topics 191-231, Marcel Dekker, 1998.
[22] H. M. Xing, X. Chen, and X. G. Chen, A note on Roman domination in graphs, Discrete Mathematics 306 (2006) 3338-3340.
|