跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.0) 您好!臺灣時間:2025/11/26 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋政輝
研究生(外文):Cheng-hui Sung 宋政輝
論文名稱:裂隙岩體破裂面參數與滲透性調查技術之研究
論文名稱(外文):Investigation Technology for fracture parameters and permeability of fractured rock masses
指導教授:王泰典
口試委員:許世孟顧承宇趙振宇黃燦輝
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:裂隙岩體離散裂隙網絡模式(DFN)代表性體積元素裂隙參數幾何參數特性水力參數試驗
外文關鍵詞:fractured rockdiscrete fracture networkREVfracture parametersgeometric parametershydraulic parameters tests
相關次數:
  • 被引用被引用:3
  • 點閱點閱:705
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水文地質模式為描述地下水流動和溶質傳輸行為的重要途徑,亦為水利資源與地下空間開發應用的關鍵技術。自然岩體中存在許多不連續面,如裂隙、層面、節理面與片理面等,使其力學與水力行為呈現異質性與異向性,造成模擬、分析的差異,甚至於工程設計與施工的困難,如何掌握場址水文地質特性,選擇適當的滲流模式採用適度的描述尺度加以預測分析,為水文地質研究自概念模式、敘述模式邁向水力學模式與數值模擬的關鍵里程。
本研究以裂隙岩體網絡(discrete fracture network,DFN)模式作為描述場址水文地質特性之前驅,設計一水文地質現地試驗井場,佈置鑽孔並進行一系列裂隙空間分佈參數調查以及水力參數試驗,探求裂隙岩體等值水力傳導係數。為獲得DFN模式所需的參數,透過室內試驗求取破裂面力學參數與幾何參數特性,最後依據裂隙參數建立二維裂隙網絡模式分析、評估與探討水文地質滲透特性。
研究結果顯示不同水力試驗方法於本研究粉砂岩地層求得的場址等值水力傳導係數,因次介於10-5~10-7 m/s,差異達二個數量級以上;就單井水力試驗結果視之,不同裂隙組合下試驗所得的水力傳導係數介於10-5~10-9 m/s,差異達四個數量級以上,顯示裂隙分佈顯著影響場址水文地質特性。本研究以離散裂隙網絡模式經調查破裂面參數後佈置井場,佐以現地水文試驗求取場址水力傳導係數,描述裂隙岩體水文地質特性在研究井場確實適當可行。
數值模擬結果顯示:依據井場附近岩體破裂面參數調查結果,模擬生成的離散裂隙網絡,鑽孔遭遇的裂隙數量與現場實測結果一致,模擬求得的水力傳導係數因次介於10-5~10-7 m/s,亦與現地水力試驗所得結果相近。本研究有關裂隙岩體水文地質特性調查的井場建置、現地試驗、室內試驗以及相關模擬分析技術可相互驗證,亦可提供水文地質特性調查與分析類似案例的參考與應用。


Hydraulic models play the key roles for description of underground water flow and solute transport, and are also crucial for the development and application of water resources and underground. The natural rock include many discontinuities like crevasses, beddings, joints and schistosities, which cause the difficulty in simulation and analysis and even further difficulties of engineering design and construction resulting in its mechanical and hydraulic behaviors present heterogeneity and anisotropy. Therefore, how to get the hydrogeological characteristics of the site and select the appropriate hydraulic model to perform prediction analysis through the modest description of scale is the key point for hydrogeological study from conceptual model, description model towards hydraulics model and numerical model.
This study designs a hydrogeological testing well site and a series of fracture parameters investigation and hydraulic parameters tests are performed, so as to get the equivalent hydraulic conductivity of fractured rock mass based on the site hydrogeological characteristics described by the discrete fracture network model (DFN) .To thoroughly obtain the parameters required by the DFN mode, laboratory experiments are conducted to obtain the characteristics of mechanical and geometric parameters. Based on the discrete fracture parameters from outcrop investigation, in-situ hydraulic test and lab test, this study established the fracture network by two-dimensional fracture network model to evaluate the site hydraulic conductivity.
This research shows the site equivalent hydraulic conductivity obtained by different hydraulic test methods applied in siltstones with the difference exceeding two orders of magnitude and the dimensions range is from 10-5 to 10-7m/s .From single well hydraulic test results shows the maximum difference of hydraulic conductivity resolved by different fracture combinations drops from 10-5 to 10-9 m/s, exceeding four orders of magnitude, indicating that the fracture distribution significantly affects the site hydrogeological characteristics. This study utilize the discrete fracture network model to build the well sites after investigating the fracture surface parameters and further obtains the site hydraulic conductivity based on site hydrological tests, which is a feasible technique for the investigation of the hydrogeological characteristics of fracture rock mass.
The simulation results show that, based on the fracture parameters measured nearby the well site, the numbers of fractures taken from the simulated discrete fracture network are similar to field measured data in wells. The calculated hydraulic conductivity dimension is from 10-5 to 10-7 m/s, which is very close to the average dimension of site hydraulic test results. This study demonstrates that using the discrete fracture network model to think about hydrogeological model can provide the references and applications for similar cases of investigation and analysis on hydrogeological properties by investigating procedure of fracture rock parameters and permeation parameters and statistical analysis. The procedure includes the wells site building, in-situ test, laboratory experiments and related simulation analysis technologies.


摘 要 I
Abstract III
致 謝 V
目 錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究方法與流程 2
1.3 研究架構與主要內容 2
第二章 文獻回顧 5
2.1 水文地質特性與描述參數 5
2.1.1 破裂面參數 6
2.1.2 位態 6
2.1.3 節理面內寬 6
2.1.4 連續性 8
2.1.5 裂隙密度及頻率 9
2.1.6 節理面粗糙度 10
2.2 節理面力學行為 10
2.2.1 節理面閉合行為 11
2.2.2 節理面剪力行為與變形性 13
2.3 單一節理面導水特性試驗 15
2.3.1 閉合行為對裂隙內寬力學-水力學耦合行為之影響 16
2.3.2 剪力對力學內寬-水力內寬耦合行為之影響 16
2.4 岩體水力參數現地試驗 17
2.4.1 呂琴透水試驗 17
2.4.2 雙封塞試驗 18
2.4.3 跨孔抽水試驗 19
第三章 井場建置 28
3.1 井場選址與試驗規劃 28
3.1.1 場址地形與地質概述 29
3.1.2 水文地質現地試驗規劃 29
3.2 現地調查與井孔佈置 33
3.2.1 暨有鑽孔與試驗資訊 33
3.2.2 露頭裂隙調查 34
3.2.3 井孔佈置 35
3.3 井孔施工與水文地質現地試驗 38
第四章 現地試驗 52
4.1 地表地質精查 52
4.1.1 路線地質圖 52
4.1.2 不連續面描述 53
4.1.3 地表裂隙參數求取 55
4.2 井孔裂隙調查 56
4.2.1 岩心裂隙描述 56
4.2.2 孔內裂隙調查及裂隙參數 57
4.3 水文地質現地試驗與結果 58
4.3.1 注氣試驗 58
4.3.2 改良式注水試驗 59
4.3.3 雙封塞試驗 59
4.3.4 跨孔抽水試驗 60
4.4 討論 61
第五章 室內試驗 83
5.1 實驗設備與試體製備 83
5.1.1 實驗設備 83
5.1.2 模擬材料選取與製作 84
5.2 完整岩石的一般指數與力學特性 86
5.2.1 岩性與抗風化能力 86
5.2.2 完整岩石力學特性 86
5.3 不連續面粗糙度與隙寬 87
5.3.1 粗糙度 87
5.3.2 節理力學特性 89
5.3.3 內寬之決定 90
第六章 數值模擬與討論 104
6.1 數值模式與輸入參數 104
6.2 模擬結果與現地試驗之比較 105
第七章 結論與建議 110
7.1 結論 110
7.2 建議 111
參考文獻 112
附錄A 115
附錄B 122
附錄C 137


[1]ASTM D 4630, “Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test,” ASTM International.
[2]Abelin, Neretnieks I., Tunbrant S. and Moreno L., “Migration in a Single Fracture :Experiment Results and Evaluation.” Final report, Stripa Project, Tech. Rep. 55-03, Swed. Nucl. Ful and Waste Manage. Co. (SKB), Stochholm, 1985.
[3]Brown S. R. and Scholz C. H., “Broad bandwith study of topography of natural rock surface.”Journal of Geophysical Research, 90(14), 1985, 12575-12582.
[4]Barton N., “Review of a new shear strength criterion for rock joints.” Engineering Geology, Vol. 7, 1973, pp. 287-332.
[5]Barton N., “ The shear strength of rock and rock joints.” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 13, 1976, pp. 255-276.
[6]Barton N. and Choubey V., “The shear strength of rock joints in theory and practice.” Rock Mechanics, Vol. 10, 1977, pp. 1-54.
[7]Bandis,S. C. A. C. Lumsden and Barton N. R., “Fundamentals of Rock Joint
Deformation.” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 20, No. 6, 1983, pp. 249-268.
[8]Bandis, S. C. A. C. Lumsden, “Experimental study of scale effect on shear strength and deformation of rock joints”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.18, No.1, pp.1-21.
[9]Barton N., Bandis S. and Bakhtar K., “Strength, deformation and conductivity coupling of rock joints.”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 22(3), 1985, pp. 121-14.
[10]Hsieh P. A., Neuman S. P. and Simpson E. S. “Pressure testing of fractured rocks- A methodology employing three dimensional cross-hole test. ” Top.Rep.NUREG /CR-3213, U. S. Nucl. Regul. Comm. Washington, D. C., 1983.
[11]Hsieh P. A. and Neuman S. P., “Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media. 1. Theory.” Water Resour. Res., 21(11), 1985, pp. 1655-1665.
[12]Hsieh P. A., Neuman S. P., G. J. Stiles and Simpson E. S., “Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media. 2. Methodology and application to fractured rock.” Water Resour. Res., 21(11), 1985, pp. 1667-1676.
[13]Louis and Maini T., “Determination of in situ hydraulic parameters in jointed rock.” Proc. 2nd ISRM Cong. 1970, pp. 235-245.
[14]Louis: Rock hydraulic. Rock Mechanics. Edited by L. Muller Udine. 1974, pp. 299-387.
[15]Lee H., B. Deng W. and Chang J. L., “A continuum approach for estimating permeability in naturally fractured rocks.” Engineering Geology, Vol. 39, 1995, pp. 71-85.
[16]Louis and Maini T., “Determination of in situ hydraulic parameters in jointed rock.” Proc. 2nd ISRM Cong. 1970, pp. 235-245.
[17]Louis: Rock hydraulic. Rock Mechanics. Edited by L. Muller Udine. 1974, pp. 299-387.
[18]Moreno, Tsang Y. W., Tsang C. F., Hale F. and Neretnieks I., “Flow and Tracer Transport in a Single Fracture: A Stochastic Model and Its Relation to Some Field Observations,” Water Resource. Research, Vol. 24, 1988, pp. 2033-2048
[19]Novakowski K.S., Evans G. V., Lever D. A. and Raven K. G., “A Field Example of Measuring Hydrodynamic Dispersion in a Single Fracture.” Water Resour Research, Vol. 21, 1985, pp.1165-1174.
[20]Olsson R. and Barton N., “An improved model for hydromechanical coupling during shearing of rock joints.” Journal of Rock Mechanics and Mining Sciences, 38(3), 2001, pp. 317-330.
[21]Priest, S. D., “ Discontinuity Analysis for Rock Engineering”, Chapman & Hall,
London SE1 8HN, 1993
[22]Priest, S. D., and Hudson, J. A., “Discontinuity Spacings in Rock.” ,International
Journal of Rock Mechanics and Mining Sciences, 1976, Vol. 13, pp. 135-148
[23]Snow D.T., “The Frequency and Apertures of Fractures in Rock,” International
Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,
Vol. 7, 1970, pp. 23-40 .
[24]Tsang Y. W. and Tsang C. F., “Channel Model of Flow Through Fractured Media.” Water Resources Research. Vol. 23, 1987, No. 3, pp. 467-479.
[25]江誌偉,裂隙岩體滲流離散模式之研究,碩士論文,國立台灣大學土木工程研究所,2008。
[26]許世孟、翁孟嘉、曾慶恩、顧承宇、譚志豪,「應用雙封塞水力試驗探討裂隙岩體之水力特性」,2006,岩盤工程研討會論文集,台南,第199-208頁。
[27]翁孟嘉、許世孟、顧承宇、冀樹勇、高憲彰,「音射式孔內探測儀於地質弱面調查之應用」,2006,岩盤工程研討會論文集,台南,第569-578頁。
[28]王泰典,岩石隧道擠壓變形模式之研究,博士論文,國立台灣大學土木工程研究所,2003。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top