|
[1]. Flory, P. J. (1974). Introductory lecture. Faraday Discuss Chem Soc 57. [2]. Burchard, W. & Ross-Murphy, S. B. (1990). Physical Networks: Polymers and Gels. pp. 1-14. Elsevier Applied Science, London. [3]. Demouveaux, B., Gouyer, V., Gottrand, F., Narita, T. & Desseyn, J. L. (2018). Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 252, 69-82. [4]. Campbell, L., Raikos, V. & Euston, S. R. (2003). Modification of functional properties of egg-white proteins. Nahrung 47(6), 369-376. [5]. Ewoldt, R. H., Winegard, T. M. & Fudge, D. S. (2011). Non-linear viscoelasticity of hagfish slime. Int J Nonlin Mech 46(4), 627-636. [6]. Taylor, C. V. (1923). The contractile vacuole in Euplotes: An example of the sol-gel reversibility of cytoplasm. J Exp Zool 37(3), 259-289. [7]. Roy, N., Saha, N., Kitano, T. & Saha, P. (2012). Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89(2), 346-353. [8]. Rudzinski, W. E., Dave, A. M., Vaishanav, U. H., Kumbar, S. G., Kulkarni, A. R. & Aminabhavi, T. M. (2002). Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5(1), 39-65. [9]. Chen, Y., Chen, L., Bai, H. & Li, L. (2013). Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1(6), 1992-2001. [10]. Qiu, Y. & Park, K. (2012). Environment-sensitive hydrogels for drug delivery. Adv Drug Del Rev 64, 49-60. [11]. Kashyap, N., Kumar, N. & Kumar, M. N. (2005). Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22(2), 107-149. [12]. Cartmell, J. V. & Sturtevant, W. R. (1992). Transparent hydrogel wound dressing. US5106629A. [13]. Drury, J. L. & Mooney, D. J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24), 4337-4351. [14]. Holtz, J. H. & Asher, S. A. (1997). Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653), 829-832. [15]. Lee, Y. J. & Braun, P. V. (2003). Tunable Inverse Opal Hydrogel pH Sensors. Adv Mater 15(78), 563-566. [16]. Lei, M. (2010). Hydrogel-actuated micromirrors for optical sensing. US7688450B2. [17]. Russell, R. J., Pishko, M. V., Gefrides, C. C., Mcshane, M. J. & Coté, G. L. (1999). A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel. Anal Chem 71(15), 3126-3132. [18]. Davis, J. T. & Spada, G. P. (2007). Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem Soc Rev 36(2), 296-313. [19]. Hsu, S. M., Lin, Y. C., Chang, J. W., Liu, Y. H. & Lin, H. C. (2014). Intramolecular interactions of a phenyl/perfluorophenyl pair in the formation of supramolecular nanofibers and hydrogels. Angew Chem Int Ed Engl 53(7), 1921-1927. [20]. Madhusudan Makwana, K. & Mahalakshmi, R. (2015). Implications of aromatic-aromatic interactions: From protein structures to peptide models. Protein Sci 24(12), 1920-1933. [21]. Ozbas, B., Kretsinger, J., Rajagopal, K., Schneider, J. P. & Pochan, D. J. (2004). Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. Macromolecules 37(19), 7331-7337. [22]. Terech, P. & Weiss, R. G. (1997). Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem Rev 97(8), 3133-3160. [23]. Draper, E. R. & Adams, D. J. (2017). Low-Molecular-Weight Gels: The State of the Art. Chem 3(3), 390-410. [24]. Kunitake, T., Okahata, Y., Shimomura, M., Yasunami, S. I. & Takarabe, K. (1981). Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles - Relationship between the Amphiphile Structure and the Aggregate Morphology. J Am Chem Soc 103(18), 5401-5413. [25]. Estroff, L. A. & Hamilton, A. D. (2004). Water gelation by small organic molecules. Chem Rev 104(3), 1201-1218. [26]. Aggeli, A., Nyrkova, I. A., Bell, M., Harding, R., Carrick, L., Mcleish, T. C., Semenov, A. N. & Boden, N. (2001). Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21), 11857-11862. [27]. Ziserman, L., Lee, H. Y., Raghavan, S. R., Mor, A. & Danino, D. (2011). Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles. J Am Chem Soc 133(8), 2511-2517. [28]. Gao, X. & Matsui, H. (2005). Peptide-Based Nanotubes and Their Applications in Bionanotechnology. Adv Mater 17(17), 2037-2050. [29]. Matsui, H., Porrata, P. & Douberly, G. E. (2001). Protein Tubule Immobilization on Self-Assembled Monolayers on Au Substrates. Nano Lett 1(9), 461-464. [30]. Reches, M. & Gazit, E. (2003). Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300(5619), 625-627. [31]. Ryu, J., Kim, S. W., Kang, K. & Park, C. B. (2010). Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv Mater 22(48), 5537-5541. [32]. Suri, S. S., Fenniri, H. & Singh, B. (2007). Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2, 16. [33]. Wang, Q., Zhang, X., Zheng, J. & Liu, D. (2014). Self-assembled peptide nanotubes as potential nanocarriers for drug delivery. RSC Advances 4(48). [34]. Park, J. H., Kwon, S., Nam, J. O., Park, R. W., Chung, H., Seo, S. B., Kim, I. S., Kwon, I. C. & Jeong, S. Y. (2004). Self-assembled nanoparticles based on glycol chitosan bearing 5beta-cholanic acid for RGD peptide delivery. J Control Release 95(3), 579-588. [35]. Silva, G. A., Czeisler, C., Niece, K. L., Beniash, E., Harrington, D. A., Kessler, J. A. & Stupp, S. I. (2004). Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662), 1352-1355. [36]. Goodwin, P. M., Ambrose, W. P. & Keller, R. A. (1996). Single-molecule detection in liquids by laser-induced fluorescence. Acc Chem Res 29(12), 607-613. [37]. Uno, S. N., Kamiya, M., Yoshihara, T., Sugawara, K., Okabe, K., Tarhan, M. C., Fujita, H., Funatsu, T., Okada, Y., Tobita, S. & Urano, Y. (2014). A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 6(8), 681-689. [38]. Juette, M. F. & Bewersdorf, J. (2010). Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution. Nano Lett 10(11), 4657-4663. [39]. Vetrone, F., Naccache, R., Zamarron, A., Juarranz De La Fuente, A., Sanz-Rodriguez, F., Martinez Maestro, L., Martin Rodriguez, E., Jaque, D., Garcia Sole, J. & Capobianco, J. A. (2010). Temperature sensing using fluorescent nanothermometers. ACS Nano 4(6), 3254-3258. [40]. Basabe-Desmonts, L., Reinhoudt, D. N. & Crego-Calama, M. (2007). Design of fluorescent materials for chemical sensing. Chem Soc Rev 36(6), 993-1017. [41]. Korostynska, O., Arshak, K., Gill, E. & Arshak, A. (2007). State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China. Sensors (Basel) 7(12), 3027-3042. [42]. Gunnlaugsson, T., Glynn, M., Tocci, G. M., Kruger, P. E. & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250(23-24), 3094-3117. [43]. Caricato, M., Coluccini, C., Vander Griend, D. A., Forni, A. & Pasini, D. (2013). From red to blue shift: switching the binding affinity from the acceptor to the donor end by increasing the π-bridge in push–pull chromophores with coordinative ends. New J Chem 37(9). [44]. Pasini, D., Righetti, P. P. & Rossi, V. (2002). Malonate Crown Ethers as Building Blocks for Novel D-π-A Chromophores. Org Lett 4(1), 23-26. [45]. De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., Mccoy, C. P., Rademacher, J. T. & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chem Rev 97(5), 1515-1566. [46]. Callan, J. F., De Silva, A. P. & Magri, D. C. (2005). Luminescent sensors and switches in the early 21st century. Tetrahedron 61(36), 8551-8588. [47]. Bojinov, V. B., Georgiev, N. I. & Bosch, P. (2009). Design and synthesis of highly photostable yellow-green emitting 1,8-naphthalimides as fluorescent sensors for metal cations and protons. J Fluoresc 19(1), 127-139. [48]. Gao, M. & Tang, B. Z. (2017). Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sens 2(10), 1382-1399. [49]. Hong, Y., Lam, J. W. & Tang, B. Z. (2009). Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb) (29), 4332-4353. [50]. Hong, Y., Lam, J. W. & Tang, B. Z. (2011). Aggregation-induced emission. Chem Soc Rev 40(11), 5361-5388. [51]. John, H. P. (1990). The UV-Visible Absorption and Fluorescence of some Substituted 1,8- Naphthalimides and Naphthlic Anhydrides. J Chem Soc Perk Trans 2 5, 837-842. [52]. Gan, J.-A., Song, Q. L., Hou, X. Y., Chen, K. & Tian, H. (2004). 1,8-Naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J Photochem Photobiol A: Chem 162(2-3), 399-406. [53]. Banerjee, S., Veale, E. B., Phelan, C. M., Murphy, S. A., Tocci, G. M., Gillespie, L. J., Frimannsson, D. O., Kelly, J. M. & Gunnlaugsson, T. (2013). Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem Soc Rev 42(4), 1601-1618. [54]. Grabtschev, I. K., Moneva, I. T., Wolarz, E. & Bauman, D. (1996). New unsaturated 1,8-naphthalimide dyes for use in nematic liquid crystals. Z Naturforsch, A: Phys Sci 51(12), 1185-1191. [55]. Veale, E. B., Frimannsson, D. O., Lawler, M. & Gunnlaugsson, T. (2009). 4-Amino-1,8-naphthalimide-based Troger's bases as high affinity DNA targeting fluorescent supramolecular scaffolds. Org Lett 11(18), 4040-4043. [56]. Hsu, S.-M., Chakravarthy, R. D., Cheng, H., Wu, F.-Y., Lai, T.-S. & Lin, H.-C. (2018). The role of aromatic side chains on the supramolecular hydrogelation of naphthalimide/dipeptide conjugates. New J Chem 42(6), 4443-4449. [57]. Yeh, M. Y., Huang, C. T., Lai, T. S., Chen, F. Y., Chu, N. T., Tseng, D. T., Hung, S. C. & Lin, H. C. (2016). Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates. Langmuir 32(30), 7630-7638. [58]. Huang, Y.-T. (2016). Napthalimide-based Self-assembled Nanostructures and Their Luminescence Characteristics. In Materials Science and Engineering: National Chiao Tung University. [59]. Hsu, S.-M. (2014). Design, Synthesis and Physical Properties of Supramolecular Hydrogels: The Versatility of Ultrashort Peptides. In Materials Science and Engineering, pp. 107. National Chiao Tung University. [60]. Gan, J., Chen, K. C., Chang, C. P. & Tian, H. (2003). Luminescent properties and photo-induced electron transfer of naphthalimides with piperazine substituent. Dyes Pigments 57(1), 21-28. [61]. Li, H.-T., Jiang, Z.-Q., Zheng, J., Wang, X., Pan, Y., Wang, F. & Yu, S.-Q. (2006). A novel 1,8-naphthalimide probe: synthesis and interactions with nucleic acid and its precursor. Res Chem Intermed 32(1), 43-57. [62]. Wang, L. L., Meiyan; Chen, Zhijun; Huang, Zhuo; Tian, He; Chen, Lirong. (2013). 萘酰亚胺衍生物及其用途. CN103012372A. [63]. Chandrika, N. T., Shrestha, S. K., Ngo, H. X. & Garneau-Tsodikova, S. (2016). Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Biorg Med Chem 24(16), 3680-3686. [64]. Wurth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. (2013). Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8(8), 1535-1550.
|