跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈安
研究生(外文):Ying-AnChen
論文名稱:太陽盲區紫外光波段之光學雷達與非直視性通訊及應用
論文名稱(外文):Applications of LIDAR and NLOS Communication based on Solar-Blind Ultraviolet Light
指導教授:李劍李劍引用關係
指導教授(外文):Jian V. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:太陽盲區紫外光光學雷達非直視性通訊
外文關鍵詞:Solar-Blind Ultraviolet LightLight Detection and RangingLIDARNon-line-of-sight CommunicationNLOS Communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用太陽盲區紫外光波段於光學雷達及非直視性通訊。太陽盲區紫外光波長介於200至280nm之間,因為臭氧層的強力吸收,此波段幾乎無法到達地球表面,所以稱作「太陽盲區」。此波段分別與上層和下層的大氣層成分有強烈反應,產生特殊的吸收與散射特性,適合運用於需要保密性及抗干擾性之遙測與通訊系統。
光學雷達部分將建立光強度與距離的關係,並考慮多種不同的雜訊以計算訊號噪音比;非直視性通訊部分將以幾何模型建立通訊方程式,並推導路徑損失、帶寬以及位元錯誤率。方程式分別建立完成後,進而考慮光學元件參數、幾何參數、大氣參數等,以電腦輔助模擬光學雷達以及非直視性通訊的各項表現,探討此波段是否能達到保密性及抗干擾等特點。另外,以市面上可取得的光學雷達測距儀驗證真實資料計數率與模擬之光子計數,並且開發陣列掃描功能,可作為往後光學雷達之設計參考。
The purpose of this study is to investigate the performance of solar-blind ultraviolet light applied to the LIDAR (Light Detection and Ranging) system and NLOS (Non-Light-of-Sight) communication system. Solar-blind ultraviolet light with wavelengths from 200nm to 280 nm, due to the absorption by the ozone layer, can hardly reach the earth's surface, hence the name solar-blind.
Solar-blind ultraviolet light reacts strongly with the components of the upper and lower layer atmosphere and produces unique absorption and scattering characteristics. It is suitable for use in telemetry and communication systems that require confidentiality and interference immunity.
The LIDAR section will establish the relationship between light intensity and distance, and consider a variety of different noises to calculate the signal-to-noise ratio. The NLOS communication part will establish the communication equation with the geometric model and derive the path loss, bandwidth, and bit error rate.
After the equations are established, we will analyze the performance of LIDAR system and NLOS communication system, considering optical component parameters, geometric parameters, and atmospheric parameters, etc., to investigate the feasibility of solar-blind ultraviolet light towards achieving confidentiality and interference immunity.
Furthermore, we use the commercially available single-photon avalanche detector (SPAD) range finder to verify the signal rate from experimental results and the photon count from simulations. Also, we develop the scanning function of the SPADs array, which can be used as a design reference for the backward LIDAR.
摘要 i
表目錄 ix
圖目錄 x
符號說明 xiii
第一章 緒論 1
1-1前言 1
1-2動機與目的 1
1-3文獻回顧 4
1-4研究架構 5
1-5太陽盲區紫外光介紹 6
第二章 光學雷達 8
2-1光學雷達基本原理 8
2-2光學雷達距離方程式 10
2-3訊號噪音比分析 14
第三章 非直視性通訊 17
3-1非直視性通訊概要 17
3-2單次反射-非直視性通訊模型 20
3-3路徑損失分析 23
3-4帶寬分析 24
3-5位元錯誤率分析 28
第四章 模擬結果與討論 32
4-1光學雷達模擬 32
4-1-1參數 33
4-1-2模擬結果 34
4-2非直視性通訊模擬 37
4-2-1參數 37
4-2-2路徑損失模擬結果 38
4-2-3資料傳輸速率模擬結果 43
4-2-4系統帶寬模擬結果 44
第五章 驗證與實作 45
5-1感測器簡介 45
5-2 VL53L1X量測結果及相關規格 46
5-2-1量測數值 46
5-2-2距離模式 47
5-2-3時間預算與測量週期 48
5-2-4 SPAD陣列範圍(ROI)與接收器視角(FOV) 49
5-3驗證光學雷達模擬結果 51
5-3-1衰減率 52
5-3-2有效距離 53
5-3-3驗證:資料計數率與光子計數模擬 54
5-4 SPAD陣列掃描-光學雷達 59
5-4-1串接架構 59
5-4-2開發SPAD陣列掃描-光學雷達 60
5-4-3展現SPAD陣列掃描-光學雷達 64
第六章 結論與未來展望 67
參考文獻 70
[1]Richmond, R. D., & Cain, S. C. Direct-detection LADAR systems. SPIE Press, 2009.

[2]Vilar, R. M., Lavrov, A. P., Utkin, A. B., & Fernandes, A. Comparison of eye-safe UV and IR lidar for small forest-fire detection. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4542, pp. 280-280, 2002.

[3]Lavrov, A., Utkin, A. B., Vilar, R., & Fernandes, A. Application of lidar in ultraviolet, visible and infrared ranges for early forest fire detection. Applied Physics B: Lasers & Optics, Vol. 76, Issue 1, pp. 87, 2003.

[4]Luettgen, M. R., Reilly, D. M., & Shapiro, J. H. Non-line-of-sight single-scatter propagation model. Journal of the Optical Society of America A: Optics, Image Science & Vision, Vol. 8, Issue 12, pp. 1964-1972, 1991.

[5]Xu, Z., Ding, H., Sadler, B. M., & Chen, G. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. Optics Letters, Vol. 33, Issue 16, pp. 1860-1862, 2008.

[6]Henyey, L. G., & Greenstein, J. L. Diffuse radiation in the galaxy. The Astrophysical Journal, Vol. 93, pp. 70-83, 1941.

[7]Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Applied Optics, Vol. 34, Issue 15, pp. 2765-2773, 1995.

[8]Qin, H., Zuo, Y., Li, F., Cong, R., Meng, L., & Wu, J. Analytical link bandwidth model based square array reception for non-line-of-sight ultraviolet communication. Optics Express, Vol. 25, Issue 19, pp. 22693-22703, 2017.

[9]Drost, R. J., & Sadler, B. M. Survey of ultraviolet non-line-of-sight communications. Semiconductor Science & Technology, Vol. 29, Issue 8, 2014.

[10]Liao, L., Li, Z., Lang, T., Chen, G., Drost, R. J., & Sadler, B. M. Long-distance non-line-of-sight ultraviolet communication channel analysis: Experimentation and modelling. IET Optoelectronics, Vol. 9, Issue 5, pp. 223-231, 2015.

[11]Gagliardi, R. M., & Karp, S. Optical communications. 1975.

[12]石尾秀樹&鄭振東. 光通訊技術 : 光通信. 全華. 2004.

[13]陳俊男, Chen, C.N. & 帕勒斯 Palais. J. C. 光纖通信與應用 = Fiber optical communications and applications. 新文京開發. 2004.

[14]Xu, Z., Sadler, B. M. Ultraviolet Communications: Potential and State-Of-The-Art. IEEE Communications Magazine, No. 5, pp. 67, 2008.

[15]Shaw, G. A., Nischan, M., Iyengar, M., Kaushik, S., & Griffin, M. K. NLOS UV communication for distributed sensor systems. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4126, Issue 1, pp. 83-96, 2000.

[16]Shaw, G. A., Siegel, A. M., & Model, J. Extending the range and performance of non-line-of-sight ultraviolet communication links. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6231, 2006.

[17]Xu, Z., Chen, G., Abou-Galala, F., & Leonardi, M. Experimental performance evaluation of non-line-of-sight ultraviolet communication systems. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6709, 2007.

[18]Shaw, G. A., Siegel, A. M., Model, J., Geboff, A., Soloviev, S., Vert, A., & Sandvik, P. Deep UV photon-counting detectors and applications. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 7320, 2009.

[19]Reilly, D. M., Moriarty, D. T., & Maynard, J. A. Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5611, pp. 244–254, 2004.

[20]Döhring, T. Critical discussion on the UV absorption properties of Earth’s atmosphere. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 10453, 2017.

[21]Light-emitting diode. (2019, May 22).In Wikipedia, the free encyclopedia.

[22]Lambert's cosine law. (2019, May 1). In Wikipedia, the free encyclopedia.

[23]Responsivity. (2018, August 21). In Wikipedia, the free encyclopedia.

[24]Bit rate. (2019 February 19). In Wikipedia, the free encyclopedia.

[25]Black-body radiation.(2019 June 16). In Wikipedia, the free encyclopedia.

[26]STMicroelectronics, UM2356.

[27]STMicroelectronics, UM5191.

[28]STMicroelectronics, VL53L1X GUI Software User Manual

[29]Standard Solar Spectra, PVeducation.

[30]Sandner, T., Schenk, H., & Drabe, C. B7. 4-Application Specific Micro Scanning Mirrors. Proceedings SENSOR 2011, 337-342. 2011.

[31]Solid-State Lidar: The Key to Cheap Self-Driving Cars, Digital Trends.

[32]Oxidation Technologies, Ozone production from UV.

[33]Christian Wolff, Rayleigh- versus Mie- Scattering.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top