跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 04:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林礽龍
研究生(外文):LIN,JENG LUNG
論文名稱:以薄膜蒸餾回收染料製造程序廢水之探討
論文名稱(外文):A study on recovery of wastewater from dyestuff manufacturing process by membrance distillation
指導教授:游勝傑
指導教授(外文):Sheng-Jie You
學位類別:碩士
校院名稱:中原大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:99
中文關鍵詞:薄膜蒸餾
外文關鍵詞:membrance distillation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了珍惜水資源並進行有效之利用,產業之用水已積極朝向製程循環使用並以提高水之回收率為努力之目標,在各種水回收技術中薄膜蒸餾技術因具有良好的回收水品質、只需要較低階之能源以及對鹽類之阻擋率高等特點成為重要的水回收技術之一,因此本研究希望應用薄膜蒸餾中之AGMD技術以探討染料製程廢水之回收可行性。
本研究共分為三部分,首先是通量模型之基礎研究用以確認通量模型與操作參數之關係,本實驗利用實驗計劃法探討熱端進料液溫度、熱端流率、冷端流率以及熱端進料液含鹽比例對膜通量之影響,結果顯示通量預估模型之R2為0.996,其調整後之R2 adj 也高達到0.995,表示預測通量模型解釋實際通量之能力相當好,其中影響實際膜通量之最主要因素為熱端之進料溫度且為指數之正效應,表示進料溫度愈高時實際之膜通量愈大,其次含鹽百分率濃度且為負效應,再來是熱端進流量的影響且為正效應,而冷端冷卻水流率影響度最低。第二部分用在於探討理論通量與實際通量之差異,結果顯示在不同之操作條件下實際膜通量為理論通量之34.4%~73.8%,當熱端進料液含鹽量愈低且熱端進流率愈高及冷端流率與熱端溫度愈高時較能接近理論通量。最後為測試染料製程廢水之水回收測試,結果顯示氯離子濃度超過20萬mg/L時,冷凝水之氯離子濃度只有6mg/L,對真色色度超過16萬之鹽析水樣其冷凝液之色度為16,顯示對阻擋率也很高,在COD阻擋率方面由於染料製造程序之合成階段及廢水進入生物處理單元之前,廢水中可能尚存在部分如醋酸及介面活性劑等物質會而造成薄膜蒸餾之初期COD阻擋率偏低影響冷凝水水質而製程清洗廢水以及生物處理單元之後之廢水利用MD處理即能得到高品質之冷凝水。
In order to cherish water resources and improve efficiency, the industry has been actively working towards the goal of improving water recovery rate. In various water recovery technologies, the membrane distillation technology produces good quality of water by high rejection rate and only requires relatively lower energy consumption, This becomes an important technology for water recovery. Therefore, this research applies the AGMD technology to explore the feasibility of the recovery of wastewater from dyestuff manufacturing process.
There are three parts on this research. The first is the basic research of the flux model to confirm the relationship between the flux rate and the operating parameters. This experiment uses DOE method to discuss the influences with hot-end feed temperature, hot-end flow rate, cold-end flow rate and hot-end feed salinity. The results show that the model prediction flux rate with the R2 0.996 and the R2 adj 0.995. The most important factor affecting the actual flux is the feed temperature at the hot end with a positive effect. The second is salinity with a negative effect, and the third is hot-end flow rate with a positive effect. The cold-end cooling water flow rate is the minor factor.
The second part shows the difference between the theoretical flux and the actual flux. The results show that the actual flux is 34.4%~73.8% of the theoretical flux in various operating conditions. The lower salinity, higher flow rate and higher temperature of hot-end feed will be closer to the theoretical flux.
Finally, our test of the dye process wastewater, show that even the concentration of chloride ion exceeds 200,000 mg/L and ADMI is more than 160,000 in hot-end feed, the concentration of chloride ions in the condensed water is only 6 mg/L and ADMI is 16. In COD rejection rate, the wastewater from synthesis stage and before the treatment with the biological unit will have a lower COD rejection rate. It’s because there might still have acetic acid and surfactant in the water. The wastewater from cleaning process and after the biological treatment unit could achieve a high quality of water by MD treatment.
目錄
摘要 ………………………………………………………………………………………….Ⅰ
Abstract………………………………………………………………………………………..Ⅱ
目錄 ………………………………………………………………………………………….Ⅲ
圖目錄 ……………………………………………………………………………………,…Ⅵ
表目錄 ……………………………………………………………………………………….Ⅸ
第一章 緒論 ………………………………………………………………………………...1
1.1 研究緣起 …………………………………………………………………………1
1.2 研究目的 …………………………………………………………………………2
1.3 研究架構 …………………………………………………………………………2
第二章 文獻回顧 …………………………………………………………………………...4
2.1 薄膜蒸餾概述 ……………………………………………………………………4
2.1.1 薄膜蒸餾之種類 ……………………………………………………………4
2.1.2 薄膜蒸餾之優點 ……………………………………………………………7
2.2 影響薄膜蒸餾之因素 …………………………………………………………. .8
2.2.1 薄膜特性之影響 ……………………………………………………………8
2.2.2 流體特性之影響 …………………………………………………………...21
2.3 質傳理論 ………………………………………………………………………28
第三章 實驗材料、步驟與方法 ………………………………………………………….37
3.1 材料與設備 ……………………………………………………………………..37
3.1.1 膜材之準備 ………………………………………………………………...37
3.1.2 AGMD 實驗模組架構 ……………………………………………………39
3.1.3 分析儀器與方法 …………………………………………………………..44
3.2 實驗步驟 ………………………………………………………………………..45
3.2.1 模組裝設與進出管線連接 ………………………………………………...45
3.2.2 系統測試 …………………………………………………………………...46
3.2.3 實驗條件設定 ……………………………………………………………...46
3.2.4 通量模型建置工具與方法 ………………………………………………...47
3.2.5 廢水水樣之準備 …………………………………………………………...47
3.2.6 冷凝水水質分析與探討 …………………………………………………...47
3.2.7 實驗注意事項 …………………………………………………………….48
第四章 結果與討論 ………………………………………………………………………...50
4.1 預測膜通量模型、實際膜通量與理論膜通量 ………………………………50
4.1.1 預測通量模型與實際通量之關係 ………………………………………...51
4.1.2 通量模型與主因子效應之關係圖 .. ……………………………….……...51
4.1.3 通量模型與重要因子 ……………………………………………………...51
4.1.4 預測通量模型之方程式 …………………………………………………...52
4.2 各因子對膜通量影響探 ………………….………………………………...…54
4.2.1 熱端進料溫度 ……………………………………………………………...54
4.2.2 熱端流率變化之影響 ……………………………………………………...54
4.2.3 冷端流率變化之影響 ……………………………………………………...54
4.2.4 熱端進料液含NaCl%對滲透通量之影響 ………………………………..55
4.2.5 各因子效應對預估通量影響之大小 ……………………………………...55
4.2.6 通量模型之應用 …………………………………………………………...59
4.3 理論通量與實際滲透通量 ……………………………………………………60
4.3.1 理論滲透通量 ……………………………………………………………..60
4.3.2 理論滲透通量與實際滲透通量差異之原因量化分析 …………………...61
4.4 染料製程廢水之產水水質與膜通量 ………………………………………..65
4.4.1 水樣A之產水水質與膜通量 ……………………………………………65
4.4.2 水樣B之產水水質與膜通量 ……………………………………………..67
4.4.3 水樣C之產水水質與膜通量 ……………………………………………..68
4.4.4 水樣D之產水水質與膜通量 ……………………………………………..72
4.4.5 水樣E之產水水質與膜通量 ……………………………………………74
4.4.6 水樣F之產水水質與膜通量 ……………………………………………76
4.4.7 COD阻擋率探討 ………………………………………………………….78
4.4.8 色度阻擋率與鹽阻擋率討論 ……………………………………………..79
4.4.9 各項染料製程廢水測試後之MD膜影像 ……………………………….79
4.4.10 染料製程廢水應用AGMD技術之水回收評估 …………………………82
第五章 結論與建議 ………………………………………………………………………..84
符號說明 …………………………………………………………………………………...86
參考資料 …………………………………………………………………………………….88
參考文獻
Abdullah Alkhudhiri, Nidal Hilal. Air gap membrane distillation: A detailed study of
high saline solution. Desalination (2016).

A. Khalifa , D. Lawal, M. Antar, M. Khayet . Experimental and theoretical investigation
on water desalination using air gap membrane distillation. Desalination 376 (2015) 94–108

Dow, N.; Zhang, J.; Duke, M.; Li, J.; Gray, S. R.; Ostarcevic, E.Membrane Distillation of Brine Wastes; 2008, http://www.xzero.se/ doc/Membrane%20Distillation%20of%20Brine%20WastesWQRA.pdf.

Eykens, L.; Hitsov, I.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Nopens, I.; Van der Bruggen, B. Influence Of Membrane Thickness and Process Conditions on Direct Contact Membrane Distillation at Different Salinities. J.

Garcia-Payo M. C., Izquierdo-Gil M. A., Fernández-Pineda C.,Wetting Study of Hydrophobic Membranes via Liquid Entry Pressure Measurements with Aqueous Alcohol Solutions. Journal of Colloid and Interface Science, 230 (2), pp. 420-431, (2000).

Hadi Attia, ,et al.” Modelling of air gap membrane distillation and its application in heavy
metals removal,” Desalination, 424 (2017) 27–36

Hitsov, I.; Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.;Van der Bruggen, B.;
Nopens, I. Calibration and Analysis of a Direct Contact Membrane Distillation Model
Using Monte Carlo Filtering. J.Membr. Sci. 2016, 515, 63.

Jingcheng Cai, Fei Guo. Study of mass transfer coefficient in membrane desalination. Desalination 407 (2017) 46–51


Jianhua Zhang ,et al.” Modelling of vacuum membrane distillation,” Journal of Membrane Science, 434(2013)1–9.

Jason Woods., John Pellegrinoa., Jay Burchb.,” Generalized guidance for considering pore-size distribution in membrane distillation,” Journal of Membrane Science, 368 (2011) 124–133.

K. Smolder and A.C.M. Franken,” Terminology for Membrane Distillation,” Desalination, 72 (1989) 249-262.

Kai Yu Wang, Suay Wei Foo, and Tai-Shung Chung.. Mixed Matrix PVDF Hollow Fiber Membranes with Nanoscale Pores for Desalination through Direct Contact Membrane Distillation.2009

Kevin W. Lawson, Douglas R. Lloyd,. Membrane distillation, Journal of Membrane Science 124 (1997) 1-25.

Khayet, M. Membranes and Theoretical Modeling of Membrane Distillation: A Review.
Adv. Colloid Interface Sci. 2011, 164 (1−2), 56.

Khayet, M.; Khulbe, K.; Matsuura, T. Characterization of Membranes for Membrane Distillation by Atomic Force Microscopy and Estimation of Their Water Vapor Transfer Coefficients in Vacuum Membrane Distillation Process. J. Membr. Sci. 2004, 238 (1−2), 199

Lawson, K. W.; Lloyd, D. R. Membrane Distillation. I. Module Design and Performance Evaluation Using Vacuum Membrane Distillation. J. Membr. Sci. 1996, 120, 111.

Lihua Zhao, Xiaolong Lu, Chunrui Wu and Qinglei Zhang,Flux enhancement in membrane distillation by incorporating AC particles into PVDF polymer matrix, Journal of Membrane Science,http://dx.doi.org/10.1016/j.memsci.2015.11.010

M Qtaishat, T Matsuura, B Kruczek, M Khayet. Heat and mass transfer analysis in direct
Contact membrane distillation- Desalination, 2008 – Elsevier

Phattaranawik, J., et al., 2003a. Effect of pore size distribution and air flux on mass
transport in direct contact membrane distillation. Journal of Membrane Science 215, 75.

S Bonyadi;TS Chung. Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes - Journal of membrane science, 2007 – Elsevier

S. S. Sreedhara and N. R. Tata, “A Novel Method for Measurement of Porosity in Nanofiber Mat using Pycnometer in Filtration,” vol. 8, no. 4, pp. 132–137, 2013.

Xu, J.; Singh, Y. B.; Amy, G. L.; Ghaffour, N. Effect of Operating Parameters and Membrane Characteristics on Air Gap Membrane Distillation Performance for the Treatment of Highly Saline Water. J. Membr. Sci. 2016, 512, 73.

Zhang, J.; Dow, N.; Duke, M.; Ostarcevic, E.; Li, J.-D.; Gray, S.Identification of Material
and Physical Features of Membrane Distillation Membranes for High Performance Desalination. J.Membr. Sci. 2010, 349 (1−2), 295
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top