跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/29 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張人文
研究生(外文):REN-WEN CHANG
論文名稱:雙金屬Pt-Ag/C奈米觸媒之結構及原子分佈對其CO氧化效應之研究
論文名稱(外文):Study on structure and atomic distribution of Pt-Ag/C nano-sized bimetallic catalysts for CO oxidation
指導教授:黃炳照黃炳照引用關係
指導教授(外文):Bing-Joe Hwang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:316
中文關鍵詞:臨場同步輻射吸收光譜CO剝除雙金屬奈米觸媒
外文關鍵詞:CO-strippingin situ X-ray absorption spectroscoNano-sized bimetal catalysts
相關次數:
  • 被引用被引用:2
  • 點閱點閱:527
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微波反應還原方法,於乙二醇之系統中合成Pt-Ag雙合金觸媒,另外,以逐步還原法製備出Pt @ Ag/C及Ag @ Pt/C等奈米級之雙合金觸媒。並利用同步輻射吸收光譜技術,配合本實驗室所發展之原子結構參數對各個雙金屬觸媒材料結構作分析,以探討其結構對ㄧ氧化碳催化氧化反應之影響。
由XRD與TEM圖之結果得知大部份自製Pt-Ag雙金屬合金觸媒之晶粒約為1~3 nm及平均粒徑約為2~3 nm,而自製Ag @ Pt/C觸媒,經XRD分析得到分相的FCC結構,判斷其應非合金相,並且平均粒徑較大且有部分聚集。研究中也藉由程序升溫表面反應,測量CO氧化之效應以電化學方法量測材料之電化學活性,其結果皆以觸媒Pt-Ag/C-R1-1催化性能最好。
本研究嘗試以不同製程與不同原子比例探討觸媒奈米結構的變化,與其氣相與液相中CO氧化催化性能建立關聯性,以尋求對CO氧化之最佳觸媒結構。
In this work, a reduction method based on microwave reaction was used to synthesize Pt-Ag bimetallic catalysts in ethylene glycol solution. A step by step procedure was adopted to prepare Ptcore @ Agshell/C and Agcore @ Ptshell/C nano-sized bimetallic catalysts. By employing the X-ray Absorption Spectroscopy(XAS) and the extracted atomic structure parameters the structure of the bimetallic catalysts was analyzed. The relationship between the structure of the synthesize catalysts and activity toward CO oxidation.
From the XRD analysis, the grain size of synthesized catalysts were about 1~3 nm wich is consistent with TEM observation. From XRD analysis, the Ag @ Pt/C catalysts with larger grain size exhibit a separated fcc structure, it was found that some of Agcore @ Ptshell/C catalysts were aggregated. In this work Temperature Programmed Surface Reaction (TPSR) was employed to evaluate the activity for CO oxidation and the electrochemical activity for CO stripping. The results show that the Pt-Ag/C-R1-1 catalyst shows the bast performance for CO oxidation.
The Pt-Ag bimetallic catalysts were synthesized by changing the sequential procedure and the solution composition. The relationship between their structure and CO oxidation in both gas and liquid phase was established. The best structure of the synthesized catalyst for CO oxidation was found in this studty.
摘要 I
Abstract .II
致謝 ..III
目錄 IV
圖目錄 ...IX
表目錄 XXIX
第一章 緒論 1
1.1前言 1
1.2奈米材料之定義、範疇及特性 3
1.3金屬奈米粒子及核殼型複合奈米粒子 ..6
1.3.1金屬奈米粒子 ..6
1.3.2核殼型複合奈米粒子 ..7
1.4雙合金奈米觸媒 11
1.4.1雙合金奈米粒子之製備 14
1.4.2觸媒奈米結構鑑定 21
1.5 研究動機、目的與方法 25
第二章 原理 27
2.1化學還原法之原理 27
2.2 X-ray吸收光譜之原理 29
2.2.1 EXAFS .29
2.2.2 XANES 35
2.2.3數據分析 37
2.2.3.1以X光吸收光譜分析觸媒結構……………………………..42
2.3 XRD分析原理 46
2.4電化學原理 47
2.4.1循環伏安法 47
2.4.2極化曲線 51
2.5 程序升溫表面反應(TPSR)原理 52
2.6質譜儀(Mass Spectrometer)原理 54
第三章 實驗設備與方法 57
3.1實驗藥品及設備 57
3.1.1實驗藥品 57
3.1.2儀器設備 58
3.2實驗方法 59
3.2.1白金-銀雙金屬奈米觸媒材料製備 59
3.2.1.1碳黑之前處理 59
3.2.1.2微波反應還原方式合成Pt-Ag/C奈米觸媒(1) 59
3.2.1.3微波反應還原方式合成Pt-Ag/C奈米觸媒(2) 61
3.2.1.4微波反應還原方式合成Pt-Ag/C奈米觸媒(3) 62
3.2.2.5 微波反應還原方式合成Pt core @ Ag/C奈米觸媒 64
3.2.1.6 微波反應還原方式合成Ag core @ Pt/C奈米觸媒 66
3.2.2 材料鑑定與分析 69
3.2.2.1 XRD分析 69
3.2.2.2 TEM 分析 69
3.2.2.3 EDS元素分析 70
3.2.2.4 電化學特性測試 70 3.2.2.4.1電極之製備 71
3.2.2.4.2 電化學特性量測 71
3.2.2.4.2.1循環伏安法 72 3.2.2.4.2.2 CO氧化測試 72
3.2.2.5 X光吸收光譜(XAS) 73
3.2.3.5.1 EXAFS之曲線適配 73 3.2.2.6 程序升溫表面反應(TPSR) 74
第四章 結果 75
4.1白金-銀雙金屬奈米觸媒材料之特性分析 75
4.1.1 能譜儀分析(EDX) 78
4.1.2 XRD與TEM分析 81
4.1.3 不同觸媒材料結構之XANES及EXAFS圖譜變化 90
4.1.3.1 X光吸收近邊緣結構 90
4.1.3.2 延伸X光吸收微細結構 97
4.1.4 程序升溫表面反應(TPSR) 132
4.2電化學特性量測結果 .140
4.2.1 循環伏安法 140
4.2.2 CO氧化測試結果 143
第五章 討論 148
5.1白金-銀雙金屬奈米觸媒材料之探討 148
5.1.1 白金-銀雙金屬奈米觸媒材料之XRD及TEM比較 148
5.1.2 白金-銀雙金屬奈米觸媒材料之結構比較 149
5.1.3原子分佈特性及觸媒結構與CO氧化的關係 160
5.1.3.1原子分佈特性及觸媒結構與程序升溫表面反應(TPSR)方
式氧化CO的關係 160
5.1.3.2 原子分佈特性及觸媒結構與電化學方式CO剝除的關係
163
第六章 結論 169
附錄 171
參考文獻 265
1. 科學人雜誌,1 (2003)。
2. 李世光,孫美芳,”我國發展新興科技微機電系統與奈米技術的人才培育與發展策略初探”,生物醫學報導,14,5 (2002)。
3. 牟中原,陳家俊,”奈米材料研究發展"科學月刊,28,281 (2000)。
4. 廖建勛,”奈米材料的發展動態”,化工資訊月刊,12,27 (1998)。
5. 呂世源,”奈米新世界”,科學發展月刊,359,4 (2002)。
6. 林景正,賴宏仁,”奈米材料與發展趨勢”,工業材料, 153,95 (1999)。
7. 工研院工業材料研究所,”材料奈米科技專刊”,台北:經濟部技術處 (2001)。
8. 陳郁文,”納米材料在觸媒上的應用”,化工,5,21 (1998)。
9. 莊萬發編撰,超微粒子理論應用,台南:復漢(1995)。
10.Choy, J. H., Han, Y. S. and Song, S. W., “Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex”, Mater. Lett., 120, 64 (1993).
11.Huang, J. M., Yang,Y., Yang, B., Liu, S.Y. and Shen, J. C., “Synthesis of the CdS nanoparticles in polymer networks “, Polym. Bull., 36, 337 (1996).
12.Jason, R., Babcock, Robert, W. and Lawrence R., “A heterocumulene metathesis route to Cd[ESiMe3]2 and passivated CdE (E = S and Se) nanocrystals”, Chem. Mater., 10, 2027 (1998).
13.Lee, L. and Seddon, G. Stephens, F., Stained Glass, New York (1976).
14.郭清癸,黃俊傑,牟中原,"金屬奈米粒子的製造"物理雙月刊,23,614,(2001)。
15. Zhu, Y., Qian, Y., Li, X. and Zhang, M.,” Gamma radiation synthesis and characterization of polyacrylamide silver nnocomposites”, Chem. Commun., 1081 (1997).
16.Esumi, K., Matsuhisa, K. and Torigoe, K., “Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator“, Langmuir, 11, 3285 (1995).
17. Mizukoshi, Y., Okitsu, K., Maeda, Y., Yamamoto, T. A., Oshima, R. and Nagata, Y.,” Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution”, J. Phys Chem. B, 101, 7033 (1997).
18. Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow, T. and Sawabe, H., “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant”, Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions”, J. Phys Chem. B, 105, 5114 (2001).
19. Bonet, F., Delmas, V., Grugeon, S., Urbina, R. H., Silvert, P. Y. and Tekaia-Elhsissen, K.,“Finely divided platinum gold alloy powders prepared in ethylene glycol”, Nanostructured Mater., 11, 1277 (1999).
20. Chen, D. H. and Hsieh, C. H., J. Mater. Chem., 12, 2412 (2002).
21. Yu, Y. Y., Chang, S. S., Lee, C. L. and Wang, C. R. C.,” Gold nanorods electrochemical synthesis and optical properties”, J. Phys. Chem. B, 101, 6661 (1997).
22. 葉晨聖,化工資訊與商情,7,64,(2004)。
23. Wang, Y. and Toshima, N., “Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures”, J. Phys. Chem. B, 101, 5301 (1997).
24. Haus, J. W., Zhou, H. S., Takami, S., Hirasawa, M., Honma, I. and Komiyama, H., “Enhanced optical properties of metal coated nanoparticles”, J. Appl. Phys., 73, 1043 (1993).
25. Jackson, J. B. and Halas, N. J., “Silver nanoshells: variations in morphologies and optical properties”, J. Phys. Chem. B, 105, 2743 (2001).
26. Westcott, S. K., Oldenburg, S. J., Lee.T. R. and Halas, N. J., “Construction of simple gold nanoparticle aggregates with controlled plasmon plasmon interactions”, Chem. Phys. Lett., 300, 524 (1999).
27.Oldenburg, S. J., Averitt, R. D., Westcott, S. L. and Halas, N. J.,“Nano engineering of optical resonances”, Chem. Phys Lett., 288 , 243 (1998).
28.Westcott, S. L., Oldenburg, S. J., Lee, T. R. and Halas, N. J., ”Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces”, Langmuir, 14, 5396 (1998).
29. Hofineister, H., Miclea, P. T. and Morke, W., “Metal nanoparticle coating of oxide nanospheres for core-shell structures”, Part. Part. Syst. Charact., 19, 359 (2002).
30. Mauik, K., Mandal, M., Pradhan, N. and Pal, T., “Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of “core-shell” type structures”, Nano Letters, 6, 319 (2001).
31. Ng, K. H. and Penner, R, M., “Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation”, J. Electro. Anal.Chem., 522, 86 (2002).
32. Gwak, J. H., Chae, S. J. and Lee, M., “Surface plasmon absorption characteristics and nonlinear optical properties of of silver/copper codoped silica thin films”, Nanostrctured. Mater., 8,1149 (1997).
33. Lin, J., Zhou, W. L., Kumbhar, A.,J. Wiemann, J., Fang, J. Y. and Carpenter, E. E. O'Connor, C. J., “Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field induced self-assembly”, J. Solid State Chem., 159, 26 (2001).
34. Sershen, S. R., Westcott, S. L., Halas, N. J. and West, J. L., “Temperature sensitive polymer-nanoshell composites for photothermally modulated drug delivery”, J. Biomed Mater. Res., 5, 293 (2002).
35. 陳東煌,” 複合奈米粒子",化工資訊與商情,3,58,(2003)
36. Chen, D. H., Lin,J. P., Wu, S. H. and Wang, C. T., “A simple Route for Formation of continuous Ni nanoshells on polymer microspheres”, Chem. Lett., 32, 662 (2003).
37. Toshima, N. and Yonezawa, T., “Bimetallic nanoparticles – novel materials for chemical and physical applications”, New. J. Chem., 1179 (1998).
38. Zhou, B.; Hermans, S.; Somorjai, G. A.; “Nanotechnology in Catalysis; Kluwer Academic/Plenum Publishers,” New York, 2004.
39. Sinfelt, J. H.; “Bimetallic Catalysts-Discoveries, Concepts, and Applications: Exxon Monograph.” Wiley, New York, 1983.
40. Sinfelt, J. H. J. Catal. 1973, 29, 308.
41. Sinfelt, J. H.; “Structure of bimetallic clusters.” Acc. Chem. Res. 1989, 20, 134.
42. Burch, R.; Garla, L. C. J. Catal. 1981, 71, 360.
43. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; “Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy.” J. Am. Chem. Soc. 2005, 127, 11140.
44. Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; “An examination of a rhodium/magnesium oxide catalyst using x-ray absorption spectroscopy.” J. Chem. Phys. 1983, 78, 882.
45. Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H. ; “Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Ir–Rh clusters.” J. Chem. Phys. 1983, 78, 2533.
46. Meitzner, G.; Via, G. H.; Lytle, F. W.; Sinfelt, J. H.; “XANES analysis of catalytic systems under reaction conditions.” J. Chem. Phys. 1985, 83, 4793.
47. Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Ru–Cu clusters.” J. Chem. Phys. 1980, 72, 4832.
48. Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Os–Cu clusters.” J. Chem. Phys. 1981, 75, 5527.
49. Sinfelt, J. H.; Via, G. H.; Lytle, F. W.; “Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Pt–Ir clusters.” J. Chem. Phys. 1982, 76, 2779.
50. Watanabe, M.; Motto, S.; “Thermodynamic modeling calculation of phase equilibria.” J. Electroanal. Chem. 1975, 60, 267.
51. Lu, C.; Rice, C.; Masel, M. I.; Babu, P. K.; Waszczuk, P.; Kim, H. S.; Oldfield, E.; Wieckowski, A.; “UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts.” J. Phys. Chem. B 2002, 106, 9581.
52. Waszczuk, P.; Lu, G. U.; Wieckowski, A.; Lu, C.; Rice, C.; Masel, M. I.; “Modern aspects of electrochemistry.” Electrochim. Acta 2002, 47, 36.
53. Lu, L.; Sun, G.; Zhang, H.; Wang, H.; Xi, S.; Hu, J.; Tian, E.; Chen, R.; “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis.” J. Mater. Chem. 2004, 14, 1005.
54. Lu, G.-Q.; Crown, A.; Wieckowski, A.; “Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes.” J. Phys. Chem. B 1999, 103, 9700.
55. Jiang, J.; Kucernak, A.; “Nanostructural platinum as an electrocatalyst for the electrooxidation of formic acid.” J. Electroanal. Chem. 2002, 520, 64.
56. Chang, S. C.; Ho, Y.; Weaver, M. J.; “Potential dependent dynamics of methanol electrooxidation on Pt(111).” Surf. Sci. 1992, 265, 81.
57. Iwasita, T.; Xia, X.; Herrero, E.; Liess, H. D.; “Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy.” Langmuir 1996, 12, 4260.
58. Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M.; “The electro-oxidation of formic acid on Pt–Pd single crystal bimetallic surfaces.” Phys. Chem. Chem. Phys. 2003, 5, 4242.
59. Pavese, A. G.; Solis, V. M.; Giordano, M. C. Electrochem. Acta 1995, 142, 3399.
60. Stonehart, P.; “Synthetic routes to high surface area non-oxide materials.” J. Hydrogen Energy 1984, 9, 921.
61. Gaseieger, H. A.; Marvokic, N. M.; Ross, P. N.; “Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface.” J. Phys. Chem. 1995, 99, 8945.
62. McBreen, J.; Mulcerjee, S. J. Electrochem. Soc. 1999, 146, 600.
63. Grgur, B. N.; Zhuang, G.; Marvokic, N. M.; “Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface.” J. Phys. Chem. B 1991, 101, 3910.
64. Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; “Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation.” J. Phys. Chem. B. 2002, 106, 1869.
65. (a) Okada, T.; Suzuki, Y.; Hirose, T.; Ozawa, T.; “Novel system of electro-catalysts for methanol oxidation based on platinum and organic metal complexes.” Electrochem, Acta 2004, 49, 385. (b) Mukerjee, S.; Srinviasan, S.; Soriaga, M. P.; McBreen, J.; “Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalystic activities for oxygen reduction- XRD, XAS, and electrochemical studies.” J. Phys. Chem. 1995, 99, 4577. (c) Shim, J.; Yoo, D. Y.; Lee, J. S.; “The electroluminescence of organic materials.” Electrochem, Acta 2000, 45, 1943.
66. Page, T.; Johnson, R.; Houmes, J.; Nodimg, S.; Rambabu, B. J. Electroanal. Chem. 2000, 485, 34.
67. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R.; “Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles.” J. Phys. Chem. B 2004, 108, 10955.
68. Marinkovic, N. S.; Wang, J. X.; Marinkovic, J. S.; Adzic, R. R.; “Unusual adsorption properties of silver adlayers on the Pt(111) electrode surface.” J. Phys. Chem. B. 1999, 103, 139.
69. Nem,G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M. Thermochim, Acta 1999, 329, 39.
70. Toshima, N.; Harada, M.; Yamazalci, Y.; Asakura, K.; “Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride.” J. Phys. Chem. 1992, 96, 9927.
71. Chen, T., Barton, S. C.; Binyamin, G.; Gao, E.; Zhang, Y.; Kim, H. H.; Heller, A.; “A miniature biofuel cell. ” J. Am. Chem. Soc. 2001, 123, 8630.
72. Matsumiya, M.; Qiu, F.; Shin, W.; Izu, N.; Matsubara, I.; Murayama, N.; Kanzaki, S.;“Thermoelectric CO gas sensor using tin-film catalyst of Au and Co3O4.” J. Electrochem. Soc. 2004, 151, H7.
73. Lee, S. -I.; Vohs, J. M.; Gorte, R. J.; “A study of SOFC anodes based on Cu-Ni and Cu-Co bimeatllics in CeO2-YSZ.” J. Electrochem. Soc. 2004, 151, A1319.
74. Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.; “Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells.” J. Electrochem. Soc. 2006, 153, A20.
75. Nabae, Y.; Yamanaka, I.; Hatano, M.; Otsuka, K.; “Catalytic behavior of Pd-Ni/composite anode for direct oxidation of methane in SOFCs.” J. Electrochem. Soc. 2006, 153, A140.
76. Prabhuram, J.; Zhao, T. S.; Liang, Z. X.; Yang, H.; Wong, C. W.; “Pd and Pd-Cu alloy deposited Nafion membranes for reduction of methanol crossover in direct methanol fuel cells.” J. Electrochem. Soc. 2005, 152, A1390.
77.Toshima, N. and Yonezawa, T., “Bimetallic nanoparticles : novel materials for chemical and physical applications”, New. J. Chem., 1179 (1998).
78.吳明立,微乳化系統製備雙金屬奈米粒子之研究,國立成功大學化學工程研究所博士論文 (2001)。
79. Sugimoto, T., ”Preparation of monodispersed colloidal particles”, Adv. Colloid Interface Sci., 28, 65 (1987).
80. Ayyappan, S., Gopalan, R. S., Subbanna, G. N. and Rao, C. N. R., ” Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts”, J. Mater. Res., 12, 398 (1997).
81. Zhang, Z., Zhao, B. and Hu, L., “PVP protective mechanism of ultrafine silver powder synthesized by chemical-reduction processes”, J. Solid State Chem., 121, 105 (1996).
82. Teranishi, T., Nakata, K., Miyake, M. and Toshima, N., ” Promotion effect of polymer-immobilized neodymiumions on catalytic activity of ultrafine palladium particles”, Chem. Lett., 4, 277 (1996).
83. Li, X., Lu, G. and Li, S., “Synthesis and properties of strontium ferrite ultrafine powders”, J. Mater. Sci. Lett., 15, 397 (1996).
84. Lee, J., Isobe, T. and Senna, M.,” Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH“, J. Colloid Interface Sci., 177, 490 (1996).
85. Ishizuki, N., Torigoe, N., Esumi, K. and Meguro, K.,” Characterization of precious metal particles prepared using chitosan as a protective agent”, Colloids and Surfaces, 55, 15 (1991).
86. Osseo-Asare, K. and Arriagada, F. J., “Nanosize silica via controlled hydrolysis in reverse micellar systems”, Ceram. Trans., 12, 3 (1990).
87. Meyer, M., Wallberg, C., Kurihara, K. and Fendler, J. H., J. Chem. Soc., Chem. Commun., 90 (1984).
88. Fendler, J. H., “Atomic and molecular clusters in membrane mimetic chemistry”, Chem. Rev., 87, 877 (1987).
89. Kitahara, A., Kazuhiko, K. and Kijiro, K.,” Formation of ionic water oil microemulsions and their application in the preparation of CaCO3 particles”, J. Colloid Interface Sci., 122, 78 (1988).
90.Osseo-Asare, K. and Arriagada, F. J., “Preparation of SiO2 nanoparticles in a nonionic reverse micellar system”, Colloids and Surfaces, 50, 321 (1990).
91. Sarathy, K. V., Kulkarni, G. U. and Rao, C. N. R., “A novel method of preparing thiol-derivatized nanoparticles of gold, platinum and silver forming superstructures”, Chem. Commun., 537 (1997).
92. Yonezawa, T., Tominaga, T. and Richard, D.,” Stabilizing structure of tertiary amine-protected rhodium colloid dispersions in chloroform”, J. Chem. Soc. Dalton Trans., 783 (1996).
93. Reetz, M. T., Winter, M. and Tesche, B.,” Regioselective palladium-catalyzed coupling reactions of vinyl chlorides with carbon nucleophiles”, Chem. Commun., 6,535 (1997).
94. (a) Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijouz, W.; Bönnemann, H.; “Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: Stripping voltammetry and rotating disk measurements.” Langmuir 1997, 13, 2591. (b) Vogel, W.; Britz, P.; Bönnemann, H.; Rothe, J.; “Structure and chemical composition of surfactant-stabilized PtRu alloy colloids.” J. Phys. Chem. B 1997, 101, 11029. (c) Bönnemann, H.; Brinkmann, R.; Britz, P.; Endruschat, U.; Mortel, R.; Paulus, U. A.; Feldmeyer, G. J.; Schmidt, T. J. J. New Mater. Electrochem. Syst. 2000, 3, 199.
95. (a) Zhang, X.; Chan, K.-Y.; “Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties.” Chem. Mater. 2003, 15, 451. (b) Liu, Y.; Qiu, X.; Chen, Z.; Zhu, W. Electrochem. Commun. 2002, 4, 550. (c) Martino, A.; Yamanaka, S. A.; Kawola, J. S.; Loy, D. A. Chem. Mater. 1997, 9, 423.
96. (a) Tsai, W. Y.; Tseng, Y. L.; Sarma, L. S.; Liu, D. G.; Lee, J. F.; Hwang, B. J.; “Genesis of Pt clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy.” J. Phys. Chem. B 2004, 108, 8148. (b) Hwang, B. J.; Tsai, Y. W.; Sarma, L. S.; Tseng, Y. L.; Liu, D. G.; Lee, J. F.; “Genesis of bimetallic Pt-Cu clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy.” J. Phys. Chem. B 2004, 108, 20427. (c) Chen, C. H.; Hwang, B. J.; Wang, G. R.; Sarma, L. S.; Tang, M. T.; Liu, D. G.; Lee, J. F.; “Nucleation and growth mechanism of Pd/Pt bimetallic clusters in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles as studied by in situ X-ray absorption spectroscopy.” J. Phys. Chem. B 2005, 109, 21566.
97. Boxall, D. L.; Deluga, G. A.; Kenik, E. A.; King, W. D.; Lukehart, C. M.; “Rapid synthesis of a Pt1Ru1/carbon nanocomposite using microwave irradiation: A DMFC anode catalyst of high relative performance.” Chem. Mater. 2001, 13, 891.
98. Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan, L. M.; “Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles.” Langmuir 2004, 20, 181.
99. Yu, W.; Tu, W.; Liu, H.; “Synthesis of nanoscale platinum colloids by microwave dielectric heating.” Langmuir 1999, 15, 6.
100. Wang, X.; Hsing, I.-M. Electrochim. Acta 2002, 47, 2981.
101. Sarma, L. S.; Lin, T.-D.; Tsai, Y.-W.; Chen, J.-M.; Hwang, B.-J. J. Power Sources 2005, 139, 44.
102. Shen, P. K.; Tian, Z. ; “Performance of highly disoersed Pt/C catalysts for low temperature fuel cells.” Electrochim. Atca 2004, 49, 3107.
103. Christina, B.; Chantal, P; Martin. C; Gianluigi, A. B.; Barry, R. M.; “Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism.” J. Am. Chem. Soc. 2004, 126, 8028.
104. Ayyappan, S., Subbanna, G. N., Srinvasa-Gopalan, R. and Rao, C. N. R., ”Nanoparticles of nickel and silver produced by the polyol reduction of the Metal-Salts Intercalated in Montmorillonite”, Solid State Ion., 84,271. (1996).
105.Hegde, M. S., Larcher, D., Dupont, L., Beaudoin, B., Tekaia-Elhsisen, K. and Trascon, J. M., ”Synthesis and chemical Reactivity of polyol prepared monodisperse nickel powders”, Solid State Ionics., 93, 33 (1997).
106. Bonet, F., Delmas, V, Grugeon, S., Hen-era Urbina, R. and Silvert, P. Y,”Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol”, Nanostructuired Mater., 11, 1277 (1999).
107.Ducamp-Sanguesa, C., Herrera-Urbina, R. and Figlarz, M., “Synthesis and characterization of fine and monodisperse silver particles of uniform shape”, J. Solid State Chem., 100, 272 (1992).
108. Silvert, P. Y., Herera-Urbina, R., Duvauchelle, N., Vjayakrishnan, V. and Tekaia-Elhsissen, K., “Preparation of colloidal silver dispersions by the polyol process I. synthesis and characterization”, J. Mater. Chem., 6, 573 (1996).
109.Silvert, P. Y, Herera-Urbina, R. and Tekaia-Elhsissen, K., “Preparation of colloidal silver dispersions by the polyol process. II. synthesis and characterization”, J. Mater. Chem., 7, 293 (1997).
110.Silvert, P. Y. and Tekaia-Elhsissen, K., ”Synthesis of monodisperse submicronic gold particles by the polyol process”, Solid State Ionics, 82, 53 (1995).
111. Toshima, N.; Hirakawa, K. Polym. J. 1999, 31, 1127.
112. Duff, D.; Mallat, T.; Schneider, M.; Baiker, A.; “Entrapment of nanostructured palladium clusters in hydrophobic sol–gel materials.” Appl. Catalysis A: General 1995, 133, 133.
113. Toshima, N.; Kuriyama, M.; Yamada, Y.; Hirai, H. Chem. Lett. 1981, 793.
114. Toshima, N.; Kuriyama, M.; Yamada, Y.; Hirai, H. Chem. Lett. 1989, 1769.
115. Zhao, B.; Toshima, N.; Chem. Express 1995, 5, 721.
116. Toshima, N. J. Macromol. Sci. Chem. 1990, A27, 1225.
117.Rolison, D. R.;Hagans, P. L.; Swider, K. E.; Long, J. W.,“Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalyst: The Importance of Mixed Electron/Proton Conductivity”, Langmuir 1999,15,774.
118.Link, S; Wang, Z. L.; El-Sayd, M. A.“Alloy Formation of Gold-Silver Nanaparticles and the Dependence of the Plasmon Absorption on Their composition”, J. Phys. Chem. B,1999,103,3529.
119.de Mongeot, F. B.:Scherer, M.;Gleich, B.;Kopatzki, E.; Behm,R. J.,“CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces – a
combined STM and TPD/TPR study”, Surf. Sci., 1998,411,249.
120.Polak, M.; Rubinovich,L., Surf. Sci. Rep.,“The interplay of surface segregation and atomic order in alloys”,2000,38,127.
121.Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.;Blizanac, B. B.; Tomoyuki, T.;Ross, p. N.; Markovic, N. M.,“The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts”, J. Am. Chem. Soc., 2005,127,6819.
122.Roth, C.; Benker, N.; Buhrmester, Th.; Mazurek, M.; Loster, M.; Fuess, H.; Koningsberger, D. C.; Ramaker, D. E.,“Determination of O[H] and CO Coverage and Adsorption Sites on PtRu Electrodes in an Operating PEM Fuel Cell”, J. Am. Chem. Soc., 2005, 127, 14607.
123.Tong, Y.Y.; Rice, C.; Wieckowski, A.; Oldfield, E,“195PtNMR of Platinum Electrocatalysts: Friedel-Heine Invariance and Correlations between Platinum Knight Shifts, Healing Length, and Adsorbate Electronegativity”, J. Am. Chem. Soc., 2000, 122, 11921.
124.Tong, Y. Y.; Yonezawa, T.; Toshima, N.; Van der Klink, J.J.;“195PtNMR of Polymer-Protected Pt/Pd Bimetallic Catalysts”, J. Phys. Chem., 1996, 100, 730.
125.Wang, Z.; Ansermett, J. P.; Slichter, C. P.,“Nuclear magnetic resonance study of Pt-Rh bimetallic clusters”, J. Chem. Soc., Faraday Trans., 1988, 84, 3785.
126.Babu, P. K.; Kim, H. S.; Oldfield, E.; Wieckowski, A.,“Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells”, J. Phys. Chem. B., 2003, 107, 7595.
127.Haubold, H. G.; Wang, X. H.,“ASAXS studies of carbon supported electrocatalysts”, Nucl. Instr. And Meth. in Phys. Res. B, 1995, 97, 50.
128.鄭有順;賴英煌;許火順;劉定國;孫亞賢;宋艷芳;李志甫,“ASAXS and WAXS for the structure of Pt/Ru nanoparticles supported on Carbon matrix”,燃料電池分析技術研討會,台北,2005,四月。
129. Kumar, M.; Radiat. Phys. Chem. 2003, 66, 403.
130. Remita, S.; Mostafavi, M.; Delcourt, M. O. Radiat. Phys. Chem. 1996, 47, 275.
131. Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A. J. Catal. 1999, 181, 223.
132. Eiser, E.; Bouchama, F.; Thathagar, M. B.; Rothenberg, G.; “Trapping Metal Nanoclusters in “Soap and Water” Soft Crystals.” ChemPhysChem 2003, 4, 526.
133. Ingelsten, H. H.; Bagwe, R.; Palmqvist, A.; Skoglundh, M.; Svanberg, C.; Holmberg, K.; Shah, D. O.; “Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions.” J. Colloid Interface Sci. 2001, 241, 104.
134. Turkevich, J. and Kirn, G., Science, 169, 870 (1970).
135. Goia, D. V. and Matijevic, E., “Preparation of monodispersed metal particles”, New J. Chem., 22, 1203 (1998).
136. Horsely, J.A.; J. Chem. Phys. 1982, 76, 451.
137. Mansour, A. N.; Cook, J. W.; Sayers, D. E.; “Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 x-ray absorption edge spectra.” J. Phys. Chem. 1984, 88, 2330.
138. B. -J. Hwang, L. S. Sarma, J. –M. Chen, C. -H. Chen, S. -C. Shih, G. -R. Wang, D. -G. Liu, J. -F. Lee, M. -T. Tang, “Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray Absorption Spectroscopy”, J. Am. Chem.Soc., 2005(in press).
139.彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997.
140.Micromeritics,“AutoChem II 2920 Automated Catalyst system Characterizyion Operator’s Manual V3.03”,2005,May
141. Thermo ELECTRON, “ProLab Operrations Manual”,2005,March.
142.Wang X., Hsing I. M., “Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells”, Electrochim. Acta, 47, 2981, 2002.
143.Eve S. Steigerwalt , Gregg A. Deluga, C. M. Lukehart , “ Pt-Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance ’’, J. Phys. Chem. B , 106, 760-766, 2002 .
144.Markovic′,N. M; Grgur, B. N; Lucas, C. A.;Ross, P. N.
“Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solution”, j. Phys. Chem. B,1999,103,487.
145.Anatoly I. Frenkel, Charles W. Hills, and Ralph G. Nuzzo, “A View from the Inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles”, J. Phys. Chem. B, 105, 12689, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top