跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/25 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅康維
研究生(外文):Kang-Wei Lo
論文名稱:還原碴、水洗灰與泥渣類廢棄物共燒製水泥之水化特性研究
論文名稱(外文):Study on the Hydration Characteristics of Portland Cement by Reduction Slag, Washed-Fly Ash and Waste Sludge for Co-Sintering
指導教授:林凱隆林凱隆引用關係
指導教授(外文):Kae-Long Lin
口試委員:王鯤生黃兆龍鄭大偉
口試委員(外文):Kuen-Sheng WangChao-Lung HwangTa-Wui Cheng
口試日期:2014-05-01
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:139
中文關鍵詞:還原碴水洗焚化飛灰環保水泥水化反應
外文關鍵詞:electric arc furnace reduction slagwashed fly-asheco-cementhydration
相關次數:
  • 被引用被引用:8
  • 點閱點閱:1003
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
  本研究係將還原碴、水洗焚化飛灰、石灰石污泥、石材污泥和煤灰礦泥拌合料等資材,根據水泥配料之石灰飽和度 (L.S.F)、水硬係數 (H.M.)、矽氧係數 (S.M.)和鋁鐵係數 (I.M.)等水泥係數為邊界條件,以電腦程式配料系統求解聯立方程式來配置七種不同型別之環保水泥,並探討環保水泥漿體之水化特性。實驗結果顯示:所燒製之環保水泥的符合CNS61之規範。而各組環保水泥熟料之單礦物組成皆含有C3S、C2S、C3A及C4AF等晶相物種與波特蘭水泥相當。環保水泥漿體之抗壓強度以EcoA為最佳,添加1%之還原碴有助於提升漿體之早期強度且EcoB水泥漿體於養護齡期為1及3天時,其抗壓強度分別為13.6及21.5 MPa,符合CSN61中輸氣第IIIA型水泥漿體之抗壓強度規範,由凝結試驗結果得知,還原碴中MgO會導致水泥於早期時水化速率增加,使得凝結時間減少進而縮短工作時間,而水洗灰系列因其α-C2S性質的影響使得其水泥漿體凝結時間減緩的現象。
  由TG-DTA 分析結果顯示,實驗所燒製之七型別環保水泥水化反應皆會生成Ca(OH)2及C-S-H膠體。由MIP分析結果顯示,實驗所燒製之環保水泥漿體孔隙皆有隨養護齡期而有緻密化之趨勢。由SEM觀察結果顯示,隨著養護齡期之增加,環保水泥漿體水化反應所生成之C-S-H膠體逐漸形成絨毛狀態,進而填充孔隙,以提昇其抗壓強度。

The purpose of this study is to co-sinter electric arc furnace reduction slag, washed-fly ash, limestone sludge, stone sludge, and iron-oxide sludge to fabricate 7 types of eco-cement clinkers. The compound raw materials were burned for 2 hours at 1400 °C to form the eco-cement clinkers, all of which met the toxicity characteristic leaching procedure requirements. The results show that the major components of ordinary Portland cement (OPC), C3S, C2S, C3A, and C4AF, were present in the eco-cement clinkers. The strength of EcoA cement paste was similar to that of OPC paste. The compressive strength of EcoB cement paste at the age of 1 and 3 days, are 13.6 MPa and 21.5 MPa, respectively. EcoB cement compliance with CNS 61 air- entrainment cement Type IIIA requirements. Two endothermic peaks, corresponding to weight loss caused by the dehydration of paste and decomposition of C-S-H gel, were observed at 40– 105 °C and 105– 440 °C. The strong endotherm at 440–580 °C was because of the decomposition of Ca(OH)2. According to the MIP results, the total pore size distribution of the pores in the pastes decreased gradually as the ages of curing days increased. The result shows the fact that the dense pastes have been filled by the hydration products. This study shows the possibility that electric arc furnace reduction slag, washed-fly ash, limestone sludge, stone sludge, and iron-oxide sludge can be used. Furthermore, electric arc furnace reduction slag, washed-fly ash, limestone sludge, stone sludge, and iron-oxide sludge have the potential to 100% replace meals as eco-cement materials, and to exhibit favorable mechanical characteristics.
摘要
圖目錄
表目錄
第一章 前言
1-1研究緣起
1-2 研究內容及目的
第二章 文獻回顧
2-1還原碴之來源與特性
2-2 焚化飛灰之來源與特性
2-3 石灰石污泥之來源與特性
2-4 石材污泥之來源與特性
2-5 煤灰礦泥拌合料之來源與特性
2-6 環保水泥
2-7 水泥之製程
2-8 水泥水化反應
2-9廢棄物添加於水泥熟料中對於水泥燒製之影響
第三章 實驗材料與方法
3-1 實驗流程
3-2 實驗材料
3-3 實驗配置
3-4 實驗設備與方法
第四章 結果與討論
4-1 替代性生料之基本性質分析
4-2 生料配比與燒製方法
4-3 熟料基本特性分析
4-4 水泥規範品管檢驗分析
4-5 凝結行為
4-6 抗壓強度發展
4-7各型別環保水泥漿體之DTA/TGA分析
4-8各型別環保水泥漿體之MIP分析
4-9各型別環保水泥漿體之SEM觀察
4-10 綜合討論
4-11 CO2減量評估
第五章 結論與建議
5-1 結論
5-2 建議
參考文獻

Abo-El-Enein S A, Heikal M, Amin MS, Negma HH. Reactivity of dealuminated kaolin and burnt kaolin using cement kiln dust or hydrated lime as activators. Construction and Building Materials 2013; 47: 1451-1460.
Al DH, Melghit K. Use of alumina spent catalyst and RFCC wastes from petroleum refinery to substitute bauxite in the preparation of Portland clinker. Journal of Hazardous Materials 2010; 179: 852-859.
Alena F, Martin H, Pavel R, Gabriel S. Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Minerals Engineering 2012; 32: 1-4 .
Ali MB, Saidur R, Hossain MS. A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews 2011; 15: 2252-2261 .
Alp İ, Deveci H, Süngün H. Utilization of flotation wastes of copper slag as raw material in cement production. Journal of Hazardous Materials 2008; 159: 390-395.
Ampadu KO, Torii K. Characterization of ecocement pastes and mortars produced from incinerated ashes. Cement and Concrete Research 2001; 31: 431-436.
Ana CN, Luis ES. A procedure to evaluate environmental rehabilitation in limestone quarries. Journal of Environmental Management 2010; 91: 2225-2237.
Atahan HN, Oktar ON, Tasdemir MA. Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste. Construction and Building Materials 2009; 23: 1196-1200.
Bernardo G, Telesca A, Valenti GL. A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cement and Concrete Research 2006; 36: 1042-1047.
Chandara C, Azizli K, Azizi M, Ahmad ZA, Sakai E. Use of waste gypsum to replace natural gypsum as set retarders in portland cement. Waste Management 2009; 29: 1675-1679.
Chea C, Khairun AMA, Zainal AA, Etsuo S. Use of waste gypsum to replace natural gypsum as set retarders in portland cement. Waste Management 2009; 29: 1675-1679.
Chen YL, Lin CJ, Ko MS, Lai YC, Chang JE. Characterization of mortars from belite-rich clinkers produced from inorganic wastes. Cement & Concrete Composites 2011; 33: 261-266.
Coleman NJ, Li Q. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement. Materials Science and Engineering C 2013; 33: 427-433.
El DH, Sharara AM, Helmy IM, El AS. Hydration characteristics of β-C2S in the presence of some accelerators. Cement and Concrete Research 1996; 26: 1179-1187.
Greenhouse Gas Protocol: http://www.ghgprotocol.org/ 2010.
Gwenn LS, Éric L, Alain R, Hélène Z. Study of oilwell cements by solid-state NMR. Comptes Rendus Chimie 2004; 7: 383-388.
Habert G, Billard C, Rossi P, Chen C, Roussel N. Cement production technology improvement compared to factor 4 objectives. Cement and Concrete Research 2010; 40: 820-826.
Hassaan MY. Basalt rock as an alternative raw material in Portland cement manufacture. Materials Letters 2001; 50: 172-178.
Kakali G, Tsivilis S, Aggeli E, Bati M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cement and Concrete Research 2000; 30: 1073-1077.
Kakali G, Tsivilis S, Kolovos K, Voglis N, Aivaliotis J, Perraki T, Passialakou E, Stamatakis M. Use of secondary mineralizing raw materials in cement production. A case study of a wolframite–stibnite ore. Cement & Concrete Composites 2005; 27: 155-161.
Kourounis S, Tsivilis S, Tsakiridis PE, Papadimitriou GD, Tsibouki Z. Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research 2007; 37: 815-822.
Kwasi OA, Kazuyuki T. Chloride ingress and steel corrosion in cement mortars incorporating low-quality fly ashes. Cement and Concrete Research 2002; 32: 893-901.
Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cement and Concrete Research 2000; 30: 747-756.
Lamas WDQ, Palau JCF, Camargo JR. Waste materials co-processing in cement industry: Ecological efficiency of waste reuse. Renewable and Sustainable Energy Reviews 2013; 19: 200-207.
Li J, Yu Q, Wei J, Zhang T. Structural characteristics and hydration kinetics of modified steel slag. Cement and Concrete Research 2011; 41: 324-329 .
Lin CK, Chen JN, Lin CC. An NMR and XRD study of solidification/stabilization of chromium with Portland cement and β-C2S. Journal of Hazardous Materials 1996; 48: 137-147.
Liu X, Zhang N, Sun H, Zhang J, Li L. Structural investigation relating to the cementitious activity of bauxite residue — Red mud. Cement and Concrete Research 2011; 41: 847-853.
Luc C, Frederic M, Julie P. Influence of clay in limestone fillers for self-compacting cement based composites. Construction and Building Materials 2011; 25: 1356-1361.
Luciano G, Lı́lia S, Leonardo G. C3A polymorphs related to industrial clinker alkalies content. Cement and Concrete Research 2004; 34: 657-664.
Mehmet G, Erhan G, Mustafa EK, Veysel B, Kasm M. Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials 2012; 37: 160-170.
Mirabbos H, Ashraf E, Yunhua X. Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceramics International 2011; 37: 871-876.
Mleza Y, Hajjaji M. Microstructural characterisation and physical properties of cured thermally activated clay-lime blends. Construction and Building Materials 2012; 26: 226-232.
Mo L, Deng M, Tang M. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cement and Concrete Research 2010; 40: 437-446.
Moa L, Deng M, Wang A. Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cement & Concrete Composites 2012; 34: 377-383.
Moseson AJ, Moseson DE, Barsoum MW. High volume limestone alkali-activated cement developed by design of experiment. Cement & Concrete Composites 2012; 34: 328-336.
Murgier S, Zanni H, Gouvenot D. Blast furnace slag cement: a 29Si and 27Al NMR study. Comptes Rendus Chimie 2004; 7: 389-394.
Nasser YM, Mohsen Q, El-Hemaly SAS, El-Korashy SA, Brown PW. High replacements of reactive pozzolan in blended cements: Microstructure and mechanical properties. Cement and Concrete Composites 2010; 32: 386-391.
Odigure JO. Grindability of cement clinker from raw mix containing metallic particles. Cement and Concrete Research 1999; 29: 303-307.
Odler I, Abdul MS. Investigations on the relationship between porosity structure and strength of hydrated portland cement pastes III. Effect of clinker composition and gypsum addition. Cement and Concrete Research 1987; 17: 22-30.
Odler I, Rößler M. Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes I. Effect of porosity. Cement and Concrete Research 1985; 15: 320-330.
Odler I, Rößler M. Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cement and Concrete Research 1985; 15: 401-410.
Pacewska B, Wilińska I, Bukowska M, Nocuń WW. Effect of waste aluminosilicate material on cement hydration and properties of cement mortars. Cement and Concrete Research 2002; 32: 1823-1830.
Payá J, Monzó J, Borrachero MV. Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cement and Concrete Research 2001; 31: 57-61.
Pochard I, Labbez C, Nonat A, Vija H, Jönsson B. The effect of polycations on early cement paste. Cement and Concrete Research 2010; 40: 1488-1494.
Puertas F, Garcia DI, Barba A, Gazulla MF, Palacios M, Gomez MP, Martinez RS. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement & Concrete Composites 2008; 30: 798-805.
Puertas F, Goni S, Hernandez MS, Varga C, Guerrero A. Comparative study of accelerated decalcification process among C3S, grey and white cement pastes. Cement & Concrete Composites 2012; 34: 384-391.
Ract PG, Espinosa DCR, Tenório JAS. Determination of Cu and Ni incorporation ratios in Portland cement clinker. Waste Management 2003; 23: 281-285.
Radwan MM, Heikal M. Hydration characteristics of tricalcium aluminate phase in mixes containing β-hemihydate and phosphogypsum. Cement and Concrete Research 2005; 35: 1601-1608.
Rosković R, Bjegović D. Role of mineral additions in reducing CO2 emission. Cement and Concrete Research 2005; 35: 974-978.
Schepper MD, Buysser KD, Driessche IV, Belie ND. The regeneration of cement out of Completely Recyclable Concrete: Clinker production evaluation. Construction and Building Materials 2013; 38: 1001-1009.
Shi C, Meyer C, Behnood A. Utilization of copper slag in cement and concrete, Resources. Conservation and Recycling 2008; 52: 1115-1120.
Shiha PH, Chang JE, Chiang LC. Replacement of raw mix in cement production by municipal solid waste incineration ash. Cement and Concrete Research 2003; 33: 1831-1836.
Singh M, Garg M. Reactive pozzolana from Indian clays—their use in cement mortars. Cement and Concrete Research 2006; 36: 1903-1907.
Sylvain M, Hélène Z, Daniel G. Blast furnace slag cement: a 29Si and 27Al NMR study. Comptes Rendus Chimie 2004; 7: 389-394.
Taylor HFW. Distribution of sulfate between phases in Portland cement clinkers. Cement and Concrete Research 1999; 29: 1173-1179.
Toledo FRD, Gonçalves JP, Americano BB, Fairbairn EMR. Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research 2007; 37: 1357-1365.
Torii K, Tomotake H, Kwasi OA, Echigo T. Compatibility between ecocement produced from incinerator ash and reactive aggregates in ASR expansion of mortars. Cement and Concrete Research 2003; 33: 571-577.
Tsakiridis PE, Papadimitriou GD, Tsivilis S, Koroneos C. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials 2008; 152: 805-811.
Wang Q, Yan P. Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials 2010; 24: 1134-1140.
Xiaocun L, Yanjun L. Effect of MgO on the composition and properties of alite-sulphoaluminate cement. Cement and Concrete Research 2005; 35: 1685-1687.
Ye Q, Chen H, Wang Y, Wang S, Lou Z. Effect of MgO and gypsum content on long-term expansion of low heat Portland slag cement with slight expansion. Cement & Concrete Composites 2004; 26: 331-337.
Ylmén R, Jäglid U, Steenari BM, Panas I. Early hydration and setting of Portland cement monitored by IR,SEM and Vicat techniques. Cement and Concrete Research 2009; 39: 433-439.
內政部營建署: http://www.cpami.gov.tw/ 2010。
方水連,溫濕度對水泥漿體巨微觀性質影響研究,國立台灣科技大學營建工程研究所碩士論文,(1992)。
王亦琛,高性能混凝土蒸氣養生材料行為探討,國立台灣科技大學營建工程研究所碩士論文,(2002)。
王年福,水泥製程於資源再利用之研究,國立中央大學土木工程學系碩士專班碩士論文,(2003)。
王年福,水泥製程於資源再利用之研究,國立中央大學土木工程學系碩士專班碩士論文,(2003)。
台灣塑膠工業股份有限公司,石灰及輕重質碳酸鈣產品石型錄,(1999)。
危時秀,普通混凝土熱傳導性質之研究,中原大學土木工程學系碩士論文,(2003)。
旭華石業股份有限公司,資源化蛇紋石廢料計畫,(2005)。
行政院環保署: http://www.epa.gov.tw/ 2010。
余騰耀、林平全、施延熙、黃兆龍、蔡敏行,「電弧爐煉鋼還原碴資源化應用技術手冊」,中技社綠色技術發展中心,台中,(2000)。
吳修賢,共熔熔渣粉體矽酸三鈣漿體之孔隙結構與水化反應研究,國立宜蘭大學環境工程研究所碩士論文,(2010)。
李宗彥,都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為,國立中央大學環境工程學研究所碩士論文,(2001)。
李冠宗,熱傳遞,文京圖書有限公司出版(1985)。
沈政儒,焚化飛灰與下水污泥灰共熔之操作特性之研究,國立中央大學環境工程研究所碩士論文,(2005)。
林仁益,水泥水化參數間基本性質演繹模式之研究,國立台灣科技大學營建工程研究所博士論文,(1991)。
林忠逸,水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究,國立中央大學環境工程研究所碩士論文,(2002)。
林明峰,廢鑄砂及石材污泥取代水泥生料之研究,國立中央大學環境工程學研究所碩士論文,(2003)。
林家宏,飛灰調質熔渣成份對卜作嵐反應特性之影響,國立中央大學環境工程學研究所碩士論文,(2004)。
林凱隆,都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究,國立中央大學環境工程學研究所博士論文,(2002)。
徐文慶,廖錦聰,ROC廢觸媒固定化應用研究,中油廢觸媒資源化研究期末報告,第10-20頁,(1991)。
翁祖增,廢觸媒的回收與再利用,觸媒與製程,第二期,第四卷,第20-31頁,(1993)。
張仁杰,廢玻璃混合廢棄多孔材料燒製多孔陶瓷對環境調濕性能之研究,國立宜蘭大學環境工程研究所碩士論文,(2011)。
張家祥,廢觸媒與泥渣類廢棄物共同燒製環保水泥之水化特性研究,國立宜蘭大學環境工程研究所碩士論文,(2012)。
陳信榮、陶錫富,煤灰礦泥拌合料研發與利用,中鋼公司研究報告,(2001)。
曾博榆,都市垃圾焚化飛灰熔融處理取代部分水泥之研究,國立中央大學環境工程學研究所碩士論文,(2002)。
黃兆龍,高等混凝土技術,財團法人中興工程顧問社,(1985)。
黃兆龍,混凝土性質與行為,詹氏書局,(1997)。
黃志強,石材污泥再利用於水泥產業之可行性研究,國立東華大學自然資源管理研究所碩士論文,(1998)。
黃尊謙,都市垃圾焚化飛灰熔融處理取代部分水泥之研究,國立中央大學環境工程學研究所碩士論文,(2000)。
經濟部,經濟部事業廢棄物再利用種類及管理方式,(2011)。
劉俊杰,水泥漿體孔隙與水灰比及抗壓強度關係之研究,國立台灣科技大學營建工程研究所碩士論文,(1990)。
蔡文田,含揮發性有機物廢氣之活性碳吸附與觸媒焚化處理研究,博士論文,國立台灣大學環境工程研究所,(1994)。
蔡豐欽,熱傳遞,高立圖書有限公司(1992)。
鄭敬融,泥渣類廢棄物與TFT-LCD廢玻璃燒製環保水泥之研究,國立宜蘭大學環境工程研究所碩士論文,(2010)。
蕭震銘,建築材料熱傳導性質對燃燒行為之影響研究,國立高雄第一科技大學環境與安全衛生工程系碩士論文,(2011)。
謝素蘭,以高壓及高溫燒結技術鑄造水泥.黏土及飛灰混合料組件之研究,國立台灣科技大學營建工程研究所碩士論文,(1990)。
魏光良,添加ROC廢觸媒水泥系複合材料漿體性質之探討,國立高雄第一科技大學營建工程研究所碩士論文,(2007)。
龔人俠,水泥化學概論,台灣水泥工業同業公會,(1977)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top