跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡佳旅
研究生(外文):Tsai, Chia-Lu
論文名稱:基於近似計算的深度學習應用之邏輯加密技術
論文名稱(外文):Lock or Luck: Robust Logic Locking for Deep-Learning Applications Using Approximate Arithmetic
指導教授:吳凱強
指導教授(外文):Wu, Kai-Chiang
口試委員:何宗易陳勇志
口試委員(外文):Ho, Tsung-YiChen, Yung-Chih
口試日期:2019-08-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:32
中文關鍵詞:硬體安全邏輯加密深度學習近似計算
外文關鍵詞:hardware securitylogic lockingdeep-learningapproximate arithmetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:454
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
由於半導體製造的複雜度和成本持續升高,IC產品的設計者、供應商和製造商遍佈在世界各地。在IC供應鏈全球化分工的趨勢下,硬體安全性問題逐漸成為半導體產業的一項重要議題。邏輯加密(Logic Locking)是一種由設計者主動保護產品的技術,防止製造過程中,產品在通過第三方時被未經授權的使用。但運用一般的邏輯加密在近似計算的電路上時,會因為容錯性而產生安全性上的缺陷,進而使得加密效果不可靠。
在這個研究中,我們首先定義影響近似計算電路上邏輯加密技術的三個重要因素,接著提出一個改良後的方法。當有未被授權的使用者試圖運作已加密的IC時,計算出來的偏差值會大幅增加,並且破壞深度學習應用程式的準確率,以達到更安全的保護效果。我們提出的加密方法最多可提升至一般邏輯加密的2.9倍防護程度。
Due to increasing complexity of hardware design and manufacturing, the designers and foundries of integrated circuits (ICs) are usually distributed worldwide. As the IC supply chain spans multiple countries, security concerns have become a major challenge to the semiconductor industry. Logic locking is a technique to protect an IC design from over-production and unauthorized use by untrusted foundries. But the conventional logic locking schemes are not secure enough when applied to approximate arithmetic circuits, since the circuits are error-tolerant.
In this work, we define three crucial factors that affect the security level of logic lock-ing on approximate arithmetic circuits. Then we propose robust locking technique to in-crease the deviation value of calculation and corrupt the deep-learning applications when unauthorized users try to access the ICs. The proposed locking strategy can reach up to 2.9 times secure level in comparison with conventional locking scheme.
Chapter 1 Introduction 1
Chapter 2 Background and Preliminaries 4
2.1 Logic Locking 4
2.2 Approximate Computing 7
Chapter 3 Motivation 8
3.1 ETA Example 8
3.2 Motivational Experiment 10
3.3 Discussion 12
Chapter 4 Methodology 13
4.1 Problem Statement 13
4.2 Attack Model 15
4.3 Robust Locking Strategy 16
4.4 Integrating the Proposed Lock 19
4.5 Evaluation 20
Chapter 5 Experimental Results 23
Chapter 6 Summary 30
Bibliography 31
[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8, pp. 1283–1295, Aug. 2014.
[2] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit integrated circuits: Detection, avoidance, and the challenges ahead,” J. Electron. Test., vol. 30, no. 1, pp. 9–23, 2007.
[3] R. Torrance and D. James, “The State-of-the-Art in Semiconductor Reverse Engi-neering,” in IEEE/ACM Design Automation Conference, 2011, pp. 333–338.
[4] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware: Identifying and classifying hardware Trojans,” IEEE Comput., vol. 43, no. 10, pp. 39–46, Oct. 2010.
[5] SEMI. (2008). Innovation is at Risk: Losses of up to $4 Billion Annually due to IP Infringement. [Online]. Available: http://www.semi.org/ en/Issues/IntellectualProperty/ssLINK/P043785, accessed Jun. 10, 2015.
[6] (Jun. 30, 2015). Top 5 Most Counterfeited Parts Represent a $169 Billion Potential Challenge for Global Semiconductor Market. [Online]. Available: http://press.ihs.com/press-release/design-supply-chain/top-5- most-counterfeited-parts-represent-169-billion-potential-cha
[7] K. He, X. Huang and S. X. -. Tan, "EM-Based On-Chip Aging Sensor for Detection of Recycled ICs," in IEEE Design & Test, vol. 33, no. 5, pp. 56-64, Oct. 2016.
doi: 10.1109/MDAT.2016.2582830
[8] (2005). Defense Science Board (DSB) Study on High Performance Microchip Supply. [Online]. Available: http://www.acq.osd.mil/dsb/ reports/ADA435563.pdf, accessed Mar. 16, 2015.
[9] The Copyright Law of the United States and Related Laws Contained in Title 17 of the United States Code, Gov. Printing Office, Washington, DC, USA, 2012.
[10] (Jan. 16, 2015). Law on the Circuit Layout of a Semiconductor Integrated Circuits (Act No. 43 of May 31, 1985, as Last Amended by Act No. 50 of June 2, 2006). [Online]. Available: http://www.wipo.int/wipolex/en/details.jsp?id=2626
[11] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of integrated circuits,” in Proc. Design Autom. Test Europe, Munich, Germany, 2008, pp. 1069–1074.
[12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic obfus-cation,” in Proceedings of the 49th Annual Design Automa- tion Conference. ACM, 2012, pp. 83–89.
[13] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri, “Fault analysis-based logic encryption,” Computers, IEEE Transactions on, vol. 64, no. 2, pp. 410–424, 2015.
[14] S. Khaleghi, K. Da Zhao, and W. Rao, “IC piracy prevention via design withholding and entanglement,” in Design Automation Conference (ASP- DAC), 2015 20th Asia and South Pacific. IEEE, 2015, pp. 821–826.
[15] B. Liu and B. Wang, “Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,” in Proceedings of the conference on Design, Automation and Test in Europe. European Design and 
Automation Association, 2014, p. 243.
[16] S. Dupuis, P.-S. Ba, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “A novel hard-ware logic encryption technique for thwarting illegal overproduction and hardware trojans,” in On-Line Testing Symposium (IOLTS), 2014 IEEE 20th International. IEEE, 2014, pp. 49–54.
[17] R. S. Chakraborty and S. Bhunia, “Harpoon: an obfuscation-based soc design meth-odology for hardware protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.
[18] Y. Lee and N. A. Touba, "Improving logic obfuscation via logic cone analysis," 2015 16th Latin-American Test Symposium (LATS), Puerto Vallarta, 2015, pp. 1-6.
[19] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo and Z. H. Kong, "Design of Low-Power High-Speed Truncation-Error-Tolerant Adder and Its Application in Digital Signal Processing," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 8, pp. 1225-1229, Aug. 2010.
[20] B. Krishnamurthy and I. G. Tollis, "Improved techniques for estimating signal proba-bilities," in IEEE Transactions on Computers, vol. 38, no. 7, pp. 1041-1045, July 1989.
[21] V. Camus, J. Schlachter and C. Enz, "A low-power carry cut-back approximate adder with fixed-point implementation and floating-point precision," 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, 2016, pp. 1-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top