|
[1]LEIBIUSKY, Jonathan; EISBRUCH, Gabriel; SIMONASSI, Dario. Getting started with storm. " O''Reilly Media, Inc.", 2012. [2]趙必厦、程麗明(2015)。Hadoop再進化:Storm流式資料即時處理引擎。臺北市:佳魁資訊。 [3]Cluster Mode Overview - Spark 1.5.2 Documentation - Cluster Manager Types. apache.org. Apache Foundation. 2015-11-09. [4]Apache Spark wiki https://zh.wikipedia.org/wiki/Apache_Spark#cite_note-4 [5]Matei Zaharia. Spark: In-Memory Cluster Computing for Iterative and Interactive Applications. Invited Talk at NIPS 2011 Big Learning Workshop: Algorithms, Systems, and Tools for Learning at Scale. [6]林大貴(2015)。Hadoop+Spark大數據巨量分析與機器學習整合開發實戰。新北市:博碩文化。 [7]夏俊鸞,劉旭暉,邵賽賽,程浩,史鳴飛,黃潔(2015)。大數據的下一步:用Spark玩轉活用。臺北市:佳魁資訊。 [8]Apache Storm http://storm.apache.org/ [9]Samza http://samza.apache.org/ [10]ZAHARIA, Matei, et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012. p. 2-2. [11]Apache Spark 1.5.2 Overview https://spark.apache.org/docs/1.5.2/ [12]ZHANG, Kai; HU, Jiayu; HUA, Bei. A holistic approach to build real-time stream processing system with GPU. Journal of Parallel and Distributed Computing, 2015, 83: 44-57. [13]TINATI, Ramine, et al. A Streaming Real-Time Web Observatory Architecture for Monitoring the Health of Social Machines. In: Proceedings of the 24th International Conference on World Wide Web. ACM, 2015. p. 1149-1154. [14]HEMALATHA, C. Sweetlin; VAIDEHI, Vijay; LAKSHMI, R. Minimal infrequent pattern based approach for mining outliers in data streams. Expert Systems with Applications, 2015, 42.4: 1998-2012. [15]Chang, J., & Lee, W.A sliding window method for finding recently frequent itemsets over online data streams. Journal of Information Science and Engineering, 2004,20(4), 753–762. [16]Chi, Y., Wang, H., Yu, P. S., & Muntz, R. R. Catch the moment: Maintaining closed frequent itemsets over a data stream sliding window. Knowledge and Information Systems, 2006, 10(3), 265–294. [17]DING, Luping; RUNDENSTEINER, Elke A. Evaluating window joins over punctuated streams. In: Proceedings of the thirteenth ACM international conference on Information and knowledge management. ACM, 2004. p. 98-107. [18]YA-XIN, Yu, et al. An indexed non-equijoin algorithm based on sliding windows over data streams. Wuhan University Journal of Natural Sciences, 2006, 11.1: 294-298. [19]ZHANG, Liang, et al. A graph-based sliding window multi-join over data stream. 重慶郵電大學學報 (自然科學版), 2007, 19.3: 362-366. [20]LEE, Chang-Hung; LIN, Cheng-Ru; CHEN, Ming-Syan. Sliding window filtering: an efficient method for incremental mining on a time-variant database. Information systems, 2005, 30.3: 227-244. [21]陳秀秀. 具時間權重之串流資料的結合運算機制. 國立臺中科技大學資訊科技與應用研究所學位論文, 2009, 1-52.
|