跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱欣雅
研究生(外文):Hsin-Ya Chiu
論文名稱:兩相混合二氧化錳/含氮石墨烯複合材料應用於可撓式非對稱固態超級電容器
論文名稱(外文):Application of Mixed-Phase MnO2/N-Containing Graphene Composites to Flexible Asymmetric Solid-State Supercapacitors
指導教授:卓君珮
指導教授(外文):Chun-Pei Cho
口試委員:鄭淑華顏秀崗
口試委員(外文):Shu-Hua ChengShiow-Kang Yen
口試日期:2018-06-21
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用材料及光電工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:95
中文關鍵詞:含氮石墨烯二氧化錳電極活性材料超級電容器可撓式非對稱固態超級電容器
外文關鍵詞:N-containing graphenemanganese dioxideelectrode active materialssupercapacitorsflexible asymmetric solid-state supercapacitors.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:990
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過低成本、簡易的水熱法合成超級電容器之電極活性材料。以含氮石墨烯做為基底層,在其上生長α-和γ-兩相混合之二氧化錳,並調整錳含量的比例,製備出條狀結構之含氮石墨烯/二氧化錳複合物(x-NGM)。製作元件時,採用PVA/LiCl電解質凝膠膜作為兩電極之分隔層,進而探討電容特性。研究結果表明過高的錳含量不利於離子傳輸和法拉第電荷轉移,其電容特性隨之下降。同時發現過多的質量負載亦會使導電率下降,進而影響超級電容器的電容特性。3-NGM1//G1元件經CV曲線計算,可獲得高達579 F·g-1之比電容。以GCD法在1 A·g-1的電流密度下進行測試,其最高能量密度和功率密度分別為73.6 Wh·kg-1和4400.0 W·kg-1,說明了其具備快速充放電能力,且提供最大的充電容量。為鑑定元件之循環穩定性,採GCD法在1 A·g-1的電流密度下,經2000次的彎曲循環後,其比電容的維持率約86.71 %。本研究之可撓式固態非對稱超級電容器具高度靈活性、循環穩定性,和良好的電容性能,可歸因於兩相混合二氧化錳和含氮石墨烯的協同效應。擬電容材料搭配電雙層電容材料的快速充放電特性,結合兩種電荷儲存機制,有助於提升電荷傳輸、降低電荷轉移阻抗,進而改善電容特性。
In this study, the electrode active materials of supercapacitors were prepared by a low-cost facile hydrothermal approach. The N-containing graphene/MnO2 composites (x-NGM) were obtained by growing α- and γ-phase MnO2 nanostructures on the surface of N-containing graphene. A PVA/LiCl electrolyte gel membrane was employed as the separator between two electrodes for supercapacitors. By changing the content of Mn and adjusting the mass loading of active materials, the capacitance characteristics of various electrodes and devices were investigated. Excessive Mn contents were proven to be detrimental to ion transport and faradaic charge transfer, and inferior capacitance characteristics were thereby resulted. Too much mass loading was also demonstrated to decrease conductivity, leading to worse capacitor performance. After calculation by CV results, the 3-NGM1//G1 device exhibited the highest specific capacitance of 579 F·g-1. The corresponding energy and power densities were 73.6 Wh·kg-1 and 4400.0 W·kg-1, respectively, implying its rapid charge/discharge capacity. After 2000 bending cycles under the current density of 1 A·g-1 by GCD method, the retention rate of specific capacitance was found to be around 86.71 %. The high flexibility, cycling stability, and good capacitance properties could be attributed to the synergistic effect of mixed-phase MnO2 and N-containing graphene. By combining the electric double-layer material with pseudo-capacitance materials, the two charge storage mechanisms were joint to improve charge transfer, conductivity, and thus capacitor performance.
目次
致謝辭 i
摘要 ii
Abstract iii
目次 v
表目次 viii
圖目次 ix
第一章 緒論 1
1.1 前言 1
1.2研究動機 1
第二章 文獻回顧 6
2.1 電雙層電容器 6
2.2 擬電容器 6
2.3 氮摻雜石墨烯應用於超級電容器 9
2.4 氧化錳應用於超級電容器 10
2.5 超級電容器之元件設計 14
第三章 實驗步驟 20
3.1 藥品與材料 20
3.2 儀器設備 21
3.3 實驗方法 22
3.3.1 材料合成 22
3.3.1.1 氧化石墨之製備 22
3.3.1.2 石墨烯之製備 22
3.3.1.3 氮摻雜石墨烯之製備 22
3.3.1.4 氮摻雜石墨烯/二氧化錳複合物之製備 23
3.3.2 超級電容器之電極 23
3.3.2.1 石墨烯塗料之配製 23
3.3.2.2 氮摻雜石墨烯塗料之配製 23
3.3.2.3 氮摻雜石墨烯/二氧化錳複合物塗料之配製 24
3.3.2.4 電極之製作 24
3.3.3 超級電容器元件 25
3.3.3.1 固態電解質之配製 25
3.3.3.2 元件之製作 25
3.4 樣品之鑑定與特性分析 25
3.4.1 場發射掃描式電子顯微鏡 25
3.4.2 球面像差修正掃描穿透式電子顯微鏡 27
3.4.3 能量散佈分析 27
3.4.4 霍式轉換紅外光譜 28
3.4.5 拉曼光譜 28
3.4.6 光電子能譜 28
3.4.7 X射線繞射圖形 29
3.4.8 電化學分析 30
3.4.8.1 交流阻抗頻譜法 30
3.4.8.2 循環伏安法 31
3.4.8.3 恆電流充放電法 32
第四章 結果與討論 35
4.1 表面形貌 35
4.2 微結構分析 35
4.3 傅立葉轉換紅外光譜 43
4.4 拉曼光譜 43
4.5 光電子能譜 44
4.6 X射線繞射圖形 49
4.7 電極之電化學特性分析 51
4.7 元件之電化學特性分析 67
4.8 循環穩定性測試 80
第五章 結論 85
參考文獻 86

表目次
表3-1 藥品列表 20
表3-2 儀器設備列表 21
表4-1 各電極之EIS模擬阻抗值 54
表4-2 由電極之CV量測結果計算出各項電容特性參數 56
表4-3 由電極GCD量測結果計算出各項電容特性參數 61
表4-4 各元件之EIS模擬阻抗值 67
表4-5 由元件CV量測結果計算出各項電容特性參數 72
表4-6 由元件GCD量測結果計算出各項電容特性參數 77
表4-7 3-NGM1/G1元件經彎曲測試所獲之各項電容特性參數 82

圖目次
圖1-1 常見的儲能裝置之電容量充放電功率特性示意圖 2
圖1-2 常見的氮摻雜石墨烯中氮原子的鍵結配置 2
圖2-1 電雙層電容器操作示意圖 7
圖2-2 擬電容之電化學反應示意圖 7
圖2-3 氮/磷共摻雜石墨烯之製備流程示意圖 8
圖2-4 以氮超摻雜三維石墨烯作為電極材料之對稱超級電容器之循環穩定性測 試 8
圖2-5 Mn3O4奈米點/氮摻雜石墨烯之製作流程示意圖 12
圖2-6 Ragone圖: 與其它文獻數據相比,GF//GF、MnO2@PANI//MnO2@PANI和GF//MnO2@PANI展現出更佳性能 12
圖2-7 三維二氧化錳片和活性碳分別作為正極和負極材料之可撓式非對稱超級電容器組裝示意圖 13
圖2-8 AC//δ-ACEP@MnO2非對稱超級電容器組裝示意圖 13
圖2-9 以RGO為正極材料,RGO/MnO2為負極材料,組裝成全固態非對稱可撓式超級電容器示意圖 15
圖2-10 以二維MnO2奈米片和電化學剝離石墨烯做成交叉指紋圖形之電極,組裝成全固態平面微型超級電容器示意圖 15
圖2-11 ANF/GO所製作之電極應用於可撓式超級電容器示意圖 16
圖2-12 以噴墨列印技術將GO-MnO2奈米複合物製作成圖案化電極,進而組裝成可撓式非對稱超級電容器之示意圖 16
圖2-13 以MnO2和RGO水凝膠膜分別製作正極和負極,BC/PAAS-Na2SO4為固態電解質,組裝成可撓式超級電容器示意圖 19
圖2-14 基於NGMn之可撓式固態非對稱超級電容器示意圖 19
圖 3-1 電極/元件製作流程圖 26
圖3-2 典型的Nyquist plot 26
圖3-3 超級電容器元件3-NGM1/G1進行不同程度之彎曲測試 34
圖4-1 SEM影像(倍率5K): (a) 氧化石墨,(b) G,(c) NG,(d) 1-NGM,(e) 2-NGM,(f) 3-NGM,(g) 4-NGM,和(h) 5-NGM 36
圖4-2 SEM影像(倍率10K): (a) 氧化石墨,(b) G,(c) NG,(d) 1-NGM,(e) 2-NGM,(f) 3-NGM,(g) 4-NGM,和(h) 5-NGM 37
圖4-3 SEM影像(倍率50K): (a) 氧化石墨,(b) G,(c) NG,(d) 1-NGM,(e) 2-NGM,(f) 3-NGM,(g) 4-NGM,和(h) 5-NGM 38
圖4-4 NG之EDS mapping: (a) C,(b) O,(c) N 39
圖4-5 2-NGM之EDS mapping: (a) C,(b) O,(c) N,(d) Mn 40
圖4-6 3-NGM之EDS mapping: (a) C,(b) O,(c) N,(d) Mn 41
圖4-7 TEM影像: (a) NG,(c) 2-NGM,(e) 3-NGM;HRTEM高解析原子影像: (b) NG,(d) 2-NGM,(f) 3-NGM 42
圖4-8 FTIR光譜: 氧化石墨、G、NG、x-NGM 45
圖4-9 拉曼光譜: (a) GO,G,NG,x-NGM;(b) 僅x-NGM 46
圖4-10 GO、G、NG、x-NGM之XPS能譜: (a) C 1s,(b) O 1s,(c) N 1s,(d) Mn 2p 48
圖4-11 氧化石墨之XRD圖形 50
圖4-12 G、NG、x-NGM之XRD圖形 50
圖4-13 21種電極之Nyquist plots 52
圖4-14 圖4-13中插圖(a)、(b)、(c)之放大圖,其中實線為模擬曲線 53
圖4-15 CV曲線: Gy、NGy和1-NGMy等電極 54
圖4-16 CV曲線: x-NGMy電極 55
圖4-17 由CV結果所繪之Ragone plot: Gy、NGy和x-NGMy等21種電極 55
圖4-18 GCD曲線: Gy、NGy和1-NGMy等電極 63
圖4-19 不同電流密度對比電容作圖: Gy、NGy和x-NGMy等21種電極 63
圖4-20 GCD曲線: 3-NGM1電極 64
圖4-21 由GCD結果所繪之Ragone plot: Gy、NGy和x-NGMy等21種電極 64
圖4-22 Nyquist plots: Gy//G1、NGy//G1和x-NGMy//G1等元件 65
圖4-23 圖4-22中插圖(a)、(b)、(c)之放大圖,其中實線為模擬曲線 66
圖4-24 CV曲線: Gy//G1、NGy//G1和1-NGMy//G1等元件 70
圖4-25 CV曲線: x-NGMy//G1元件 70
圖4-26 由CV結果所繪之Ragone plot: Gy//G1對稱元件,以及NGy//G1和x-NGMy//G1等非對稱元件 71
圖4-27 GCD曲線: Gy//G1、NGy//G1和1-NGMy//G1等元件 71
圖4-28 不同電流密度對比電容作圖: Gy//G1、NGy//G1和x-NGMy//G1等元件 76
圖4-29 GCD曲線: 3-NGM1//G1元件 76
圖4-30 由GCD結果所繪Ragone plot: Gy//G1、NGy//G1和x-NGMy//G1等元件 79
圖4-31 CV彎曲測試圖: 3-NGM1//G1元件 79
圖4-32 GCD彎曲測試圖: 3-NGM1//G1元件 83
圖4-33 GCD彎曲測試之不同次數比較圖: 3-NGM//G1元件 83
圖4-34 循環壽命圖: 3-NGM1//G1非對稱元件 84
圖4-35 Ragone plot: 3-NGM1//G1元件結果(1 A·g-1、3 A·g-1、5 A·g-1、847 A·g-1、 9 A·g-1電流密度下)與其他文獻比較圖 84



[1]T.M.I. Mahlia, T.J. Saktisahdan, A. Jannifar , M.H. Hasan, H.S.C. Matseelar, A review of available methods and development on energy storage; technology update, Renew. Sust. Energ. Rev. 33 (2014) 532-542.
[2] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, ACS Chem. Rev. 104 (2004) 4245-4269.
[3]J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651-652.
[4]D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna , P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotech. 5 (2010) 651-654.
[5]X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotech. 6 (2011) 232-236.
[6]K. Naoi, W. Naoi, S. Aoyagi, J.I. Miyamoto, T. Kamino, New generation “nanohybrid supercapacitor”, Acc. Chem. Res. 46 (2013) 1075-1083.
[7]V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 13574-13577.
[8]X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Li Gong, W.C. Yen, W. Mai, J. Chen, K. Huo, Y.L. Chueh, Z. L. Wang, J. Zhou, Fiber-based all-solid-state flexible supercapacitors for self-powered systems, ACS Nano. 6 (2012) 9200-9206.
[9]X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications, Energy Environ. Sci. 7 (2014) 2160-2181.
[10]P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors, Nano Energy 8 (2014) 274-290.
[11]W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review, J. Phys. Chem. C 120 (2016) 4153-4172.
[12]C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6 (2006) 2690-2695.
[13]X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong, Y. Li, High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode, Nano Lett. 13 (2013) 2628-2633.
[14]C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, H. Flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025-4031.
[15]Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng, W. Zhou, X. Chen, S. Xie, Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture, Adv. mater. 25 (2013) 1058-1064.
[16] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. mater. 7 (2008) 845-854.
[17] X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y. Tong, J. Zhou, Z.L. Wang, WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors, Adv. Eng. Mater. 2 (2012) 1328-1332.
[18]Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, Y. Zhang, Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor, ACS Appl. Mater. Interfaces 8 (2016) 5251-5260.
[19]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502.
[20] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 11 (2011) 2472–2477.
[21] P. Iamprasertkun, A. Krittayavathananon, M. Sawangphruk, N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors, Carbon. 102 (2015) 455-461.
[22]Y. Wen, T.E. Rufford, D.H. Jurcakova, L. Wang , Nitrogen and phosphorous co-doped graphene monolith for supercapacitors, ChemSusChem 9 (2016) 513-520.
[23]W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H. M. Cheng, Y. Du, N. Tang, W. Ren, Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors, Adv. Mater. 29 (2017) 1701677.
[24] B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, X. Nong, Y. Qiao, H. Fu, Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction, Appl. Surf. Sci. 258 (2012) 3438-3443.
[25] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv. 2 (2012) 4498-4506.
[26] D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5 (2006) 987-994.
[27]K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Supercapacitors using single-walled carbon nanotube electrodes, Adv. Mater. 13 (2001) 497-500.
[28]J. Gamby, P.L Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101 (2001) 109-116.
[29]R.K. Sharma, A.C. Rastogi, S.B. Desu, Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor, Electrochem. Commun. 10 (2008) 268-272.
[30]F. Fusalba, P. Gouerec, D. Villers, D. Belanger, Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors, J. Electrochem. Soc. 148 (2001) A1-A6.
[31]A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, Polythiophene-based supercapacitors, J. Power Sources 80 (1999) 142-148.
[32] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, J. Electrochem. Soc. 138 (1991) 1539-1548.
[33]T. Cottineau, M. Toupin, T. Delahaye1, T. Brousse, D. Belanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A 82 (2006) 599-606.
[34]S. Akbulut, M. Yilmaz, S. Raina, S.H. Hsu, W.P. Kang, Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil, J. Appl. Electrochem. 47 (2017) 1035-1044.
[35]J. Yan , Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density, Adv. Funct. Mater. 22 (2012) 2632-2641.
[36]P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes, Nano Lett. 14 (2014) 731-736.
[37]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide MnO2 nanocomposite for supercapacitors, ACS Nano 4 (2010) 2822-2830.
[38] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three dimensional graphene MnO2 composite networks as ultralight and flexible superapacitors electrodes, ACS Nano 7 (2013) 174-182.
[39]Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 21 (2011) 2366-2375.
[40]T. Zhai, X. Lu, F. Wang, H. Xia, Y. Tong, MnO2 nanomaterials for flexible supercapacitors:performance enhancement via intrinsic and extrinsic modification, Nanoscale Horiz. 1 (2016) 109-124.
[41]H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, ACS Catal. 2 (2012) 781-794.
[42]S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406-4417.
[43] M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors,J. Mater. Chem. A 3 (2015) 21380-21424.
[44]http://endomoribu.shinshu-u.ac.jp
[45] http://www.enedu.org.tw/technology/tech-3.php
[46]L. Liu, L. Su, J. Lang, B. Hu, S. Xu, X. Yan, Controllable synthesis of Mn3O4 nanodots@nitrogen-doped graphene and its application for high energy density supercapacitors, J. Mater. Chem. A 5 (2017) 5523-5531.
[47]K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, Development of 3-D urchin shaped coaxial MnO2@PANI composite and self-assembled 3-D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application, ACS Appl. Mater. Interfaces 9 (2017) 15350-15363.
[48]N. Liu, Y. Su, Z. Wang, Z. Wang, J. Xia, Y. Chen, Z. Zhao, Q. Li, F. Geng, Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors, ACS Nano 11 (2017) 7879-7888.
[49]X. Wang, S. Chen, D. Li, S. Sun, Z. Peng, S. Komarneni, D. Yang, Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors, ACS Sustainable Chem. Eng. 6 (2018) 633-641.
[50]K. V. Karthik, S.N. Shruthi, V. Ganagaraju, D. Rangappa, Synthesis and fabrication of flexible solid state asymmetric supercapacitor, Mater. Today: Proceedings 4 (2017) 12229-12237.
[51] J. Qin, Z.S. Wu, F. Zhou, Y. Donga, H. Xiao, S. Zheng, S. Wang, X. Shia, H. Huang, C. Sun, X. Bao, Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets, Chin. Chem. Lett. (2017) 1-5.
[52] S.R. Kwon, M.B. Elinski, J.D. Batteas, J.L. Lutkenhaus, Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes, ACS Appl. Mater. Interfaces 9 (2017) 17125-17135.
[53]P. Sundriyal, S. Bhattacharya, Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 38507-38521.
[54]H. Fei, N. Saha, N. Kazantseva, R. Moucka, Q. Cheng, P. Saha, A highly flexible supercapacitor based on MnO2/rGO nanosheets and bacterial cellulose-filled gel electrolyte, Materials 10 (2017) 1251.
[55]Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot self-assembled three-dimensional TiO2 graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces 5 (2013) 2227-2233.
[56]Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano. 7 (2013) 4042-4049
[57] H. Xu, Z. Qu, C. Zong, W. Huang, F. Quan, N. Yan, MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury, Environ. Sci. Technol. 49 (2015) 6823-6830.
[58] Y. Yang, B. Zeng, J. Liu, Y. Long, N. Li, Z. Wen, Y. Jiang, Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor, Mater. Res. Innovations 20 (2016) 92-98.
[59]Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes, J. Mater. Chem. 21 (2011) 14706-14711.
[60]B. Unnikrishnan, C.W. Wu, I.W.P. Chen, H.T. Chang, C.H. Lin, C.C. Huang, Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application, ACS Sustainable Chem. Eng. 4 (2016) 3008-3016.
[61]D. Du, P. Li, J. Ouyang, Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst, ACS Appl. Mater. Interfaces 7 (2015) 26952-26958.
[62]B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes, Electrochim. Acta 241 (2017) 1-9.
[63]J. Qu, L. Shi, C. He, F. Gao, B. Li, Q.Z.H. Hu , G. Shao, X. Wang, J. Qiu, Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue, Carbon 66 (2014) 485-492.
[64]D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide, Langmuir 26 ( 2010) 16096-16102.
[65]G. Arunabha, L.Y. Hee, Carbon-based electrochemical capacitors, ChemSusChem 5 (2012) 480-499.
[66]F.T. Johra, J.W. Lee, Woo-Gwang Jung, Facile and safe graphene preparation on solution based platform, J. Ind. and Eng. 20 (2014) 2883-2887.
[67]M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants, J. Photochem. Photobiol. B 163 (2016) 216-223.
[68]E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A.R. Biris, V. Saini, A.S. Biris, Large-scale graphene production by RF-cCVD method, Chem. Commun. 27 (2009) 4061-4063.
[69]Y. Li, N. Zhao, C. Shi, E. Liu, C. He, Improve the supercapacity performance of MnO2‑decorated graphene by controlling the oxidization extent of graphene, J. Phys. Chem. C 116 (2012) 25226-25232.
[70]Y. Ren, Q. Xu, J. Zhang, H. Yang, B. Wang, D. Yang, J. Hu, Z. Liu, Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 9689-9697.
[71]A. Zolfaghari, H.R. Naderi, H.R. Mortaheb, Carbon black/manganese dioxide composites synthesized by sonochemistry method for electrochemical supercapacitors, J. Electroanal. Chem. 697 (2013) 60-67.
[72]H.R. Naderia, P. Norouzia, M.R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite, Appl. Surf. Sci. 366 (2016) 552–560.
[73]X. Zhang, M. He, P. He, C. Li, H. Liu, X. Zhang, Y. Ma, Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors, Appl. Surf. Sci. 433 (2018) 419-427.
[74]H. Bin, H. Chenling, Q. Yong, Facile hydrothermal synthesis of manganese dioxide/nitrogen-doped graphene composites as electrode material for supercapacitors, J. Electrochem. Sci. 12 (2017) 11171-11180.
[75] W. Xiao, Z. Wenjie, H. Yu, Y. Pu, Z. Yanhua, Template synthesis of hierarchical mesoporous δ-MnO2 hollow microspheres as electrode material for high-performance symmetric supercapacitor, Electrochim. Acta. 264 (2018) 1-11.
[76] L. Me, P. Feng, S. G. C. Eugene, L. Yunbo, C. Yu, X. Junmin, Designed construction of a graphene and iron oxide freestanding electrode with enhanced flexible energy-storage performance, ACS Appl. Mater. Interfaces 8 (2016) 6972-6981.
[77]H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interfaces 4 (2012) 2801-2810.
[78]M. Yang, D.S. Kim, S.B. Hong, J.W. Sim, J. Kim, S.S. Kim, B.G. Choi, MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors, Langmuir 33 (2017) 5140-5147.
[79]Q. Qu, P. Zhang, B. Wang, Y. Chen, Shu Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, J. Phys. Chem. C 113 (2009) 14020-14027.
[80]H. Cheng, H.M. Duon, Three dimensional manganese oxide on carbon nanotube hydrogels for asymmetric supercapacitors, RSC Adv. 6 (2016) 36954-36960.
[81]A. Sliwak, G. Gryglewicz, High-voltage asymmetric supercapacitors based on carbon and manganese oxide/oxidized carbon nanofiber composite electrodes, Energy Technol. 2 (2014) 819-824.
[82]T.C. Chou, R.A. Doong, C.C Hu, B. Zhang, D.S. Su, Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors, ChemSusChem 7 (2014) 841-847.
[83]L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability, J. Phys. Chem. C 118 (2014) 22865-22872.
[84]Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors, Nano Lett. 12 (2012) 4206-4211.
[85]V. Khomenko, E.R. Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, J. Power Sources 153 (2006) 183-190.
[86]T. Brousse, P.L. Taberna , O. Crosnier, R. Dugasa, P. Guillemet, Y. Scudeller, Y. Zhoud, F. Favier, D. Belanger, P. Simon, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J Power Sources 173 (2007) 633-641.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊