|
[1]T.M.I. Mahlia, T.J. Saktisahdan, A. Jannifar , M.H. Hasan, H.S.C. Matseelar, A review of available methods and development on energy storage; technology update, Renew. Sust. Energ. Rev. 33 (2014) 532-542. [2] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors, ACS Chem. Rev. 104 (2004) 4245-4269. [3]J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651-652. [4]D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna , P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotech. 5 (2010) 651-654. [5]X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotech. 6 (2011) 232-236. [6]K. Naoi, W. Naoi, S. Aoyagi, J.I. Miyamoto, T. Kamino, New generation “nanohybrid supercapacitor”, Acc. Chem. Res. 46 (2013) 1075-1083. [7]V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 13574-13577. [8]X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Li Gong, W.C. Yen, W. Mai, J. Chen, K. Huo, Y.L. Chueh, Z. L. Wang, J. Zhou, Fiber-based all-solid-state flexible supercapacitors for self-powered systems, ACS Nano. 6 (2012) 9200-9206. [9]X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: design, fabrication and applications, Energy Environ. Sci. 7 (2014) 2160-2181. [10]P. Yang, W. Mai, Flexible solid-state electrochemical supercapacitors, Nano Energy 8 (2014) 274-290. [11]W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review, J. Phys. Chem. C 120 (2016) 4153-4172. [12]C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6 (2006) 2690-2695. [13]X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong, Y. Li, High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode, Nano Lett. 13 (2013) 2628-2633. [14]C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, H. Flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025-4031. [15]Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng, W. Zhou, X. Chen, S. Xie, Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture, Adv. mater. 25 (2013) 1058-1064. [16] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. mater. 7 (2008) 845-854. [17] X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y. Tong, J. Zhou, Z.L. Wang, WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors, Adv. Eng. Mater. 2 (2012) 1328-1332. [18]Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, Y. Zhang, Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor, ACS Appl. Mater. Interfaces 8 (2016) 5251-5260. [19]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502. [20] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 11 (2011) 2472–2477. [21] P. Iamprasertkun, A. Krittayavathananon, M. Sawangphruk, N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors, Carbon. 102 (2015) 455-461. [22]Y. Wen, T.E. Rufford, D.H. Jurcakova, L. Wang , Nitrogen and phosphorous co-doped graphene monolith for supercapacitors, ChemSusChem 9 (2016) 513-520. [23]W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H. M. Cheng, Y. Du, N. Tang, W. Ren, Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors, Adv. Mater. 29 (2017) 1701677. [24] B. Jiang, C. Tian, L. Wang, L. Sun, C. Chen, X. Nong, Y. Qiao, H. Fu, Highly concentrated, stable nitrogen-doped graphene for supercapacitors: simultaneous doping and reduction, Appl. Surf. Sci. 258 (2012) 3438-3443. [25] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv. 2 (2012) 4498-4506. [26] D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5 (2006) 987-994. [27]K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Supercapacitors using single-walled carbon nanotube electrodes, Adv. Mater. 13 (2001) 497-500. [28]J. Gamby, P.L Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101 (2001) 109-116. [29]R.K. Sharma, A.C. Rastogi, S.B. Desu, Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor, Electrochem. Commun. 10 (2008) 268-272. [30]F. Fusalba, P. Gouerec, D. Villers, D. Belanger, Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors, J. Electrochem. Soc. 148 (2001) A1-A6. [31]A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque, Polythiophene-based supercapacitors, J. Power Sources 80 (1999) 142-148. [32] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, J. Electrochem. Soc. 138 (1991) 1539-1548. [33]T. Cottineau, M. Toupin, T. Delahaye1, T. Brousse, D. Belanger, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A 82 (2006) 599-606. [34]S. Akbulut, M. Yilmaz, S. Raina, S.H. Hsu, W.P. Kang, Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil, J. Appl. Electrochem. 47 (2017) 1035-1044. [35]J. Yan , Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density, Adv. Funct. Mater. 22 (2012) 2632-2641. [36]P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes, Nano Lett. 14 (2014) 731-736. [37]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide MnO2 nanocomposite for supercapacitors, ACS Nano 4 (2010) 2822-2830. [38] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three dimensional graphene MnO2 composite networks as ultralight and flexible superapacitors electrodes, ACS Nano 7 (2013) 174-182. [39]Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, Adv. Funct. Mater. 21 (2011) 2366-2375. [40]T. Zhai, X. Lu, F. Wang, H. Xia, Y. Tong, MnO2 nanomaterials for flexible supercapacitors:performance enhancement via intrinsic and extrinsic modification, Nanoscale Horiz. 1 (2016) 109-124. [41]H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, ACS Catal. 2 (2012) 781-794. [42]S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406-4417. [43] M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors,J. Mater. Chem. A 3 (2015) 21380-21424. [44]http://endomoribu.shinshu-u.ac.jp [45] http://www.enedu.org.tw/technology/tech-3.php [46]L. Liu, L. Su, J. Lang, B. Hu, S. Xu, X. Yan, Controllable synthesis of Mn3O4 nanodots@nitrogen-doped graphene and its application for high energy density supercapacitors, J. Mater. Chem. A 5 (2017) 5523-5531. [47]K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, Development of 3-D urchin shaped coaxial MnO2@PANI composite and self-assembled 3-D pillared graphene foam for asymmetric all-solid-state flexible supercapacitor application, ACS Appl. Mater. Interfaces 9 (2017) 15350-15363. [48]N. Liu, Y. Su, Z. Wang, Z. Wang, J. Xia, Y. Chen, Z. Zhao, Q. Li, F. Geng, Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors, ACS Nano 11 (2017) 7879-7888. [49]X. Wang, S. Chen, D. Li, S. Sun, Z. Peng, S. Komarneni, D. Yang, Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors, ACS Sustainable Chem. Eng. 6 (2018) 633-641. [50]K. V. Karthik, S.N. Shruthi, V. Ganagaraju, D. Rangappa, Synthesis and fabrication of flexible solid state asymmetric supercapacitor, Mater. Today: Proceedings 4 (2017) 12229-12237. [51] J. Qin, Z.S. Wu, F. Zhou, Y. Donga, H. Xiao, S. Zheng, S. Wang, X. Shia, H. Huang, C. Sun, X. Bao, Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets, Chin. Chem. Lett. (2017) 1-5. [52] S.R. Kwon, M.B. Elinski, J.D. Batteas, J.L. Lutkenhaus, Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes, ACS Appl. Mater. Interfaces 9 (2017) 17125-17135. [53]P. Sundriyal, S. Bhattacharya, Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 38507-38521. [54]H. Fei, N. Saha, N. Kazantseva, R. Moucka, Q. Cheng, P. Saha, A highly flexible supercapacitor based on MnO2/rGO nanosheets and bacterial cellulose-filled gel electrolyte, Materials 10 (2017) 1251. [55]Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot self-assembled three-dimensional TiO2 graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces 5 (2013) 2227-2233. [56]Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films, ACS Nano. 7 (2013) 4042-4049 [57] H. Xu, Z. Qu, C. Zong, W. Huang, F. Quan, N. Yan, MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury, Environ. Sci. Technol. 49 (2015) 6823-6830. [58] Y. Yang, B. Zeng, J. Liu, Y. Long, N. Li, Z. Wen, Y. Jiang, Graphene/MnO2 composite prepared by a simple method for high performance supercapacitor, Mater. Res. Innovations 20 (2016) 92-98. [59]Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes, J. Mater. Chem. 21 (2011) 14706-14711. [60]B. Unnikrishnan, C.W. Wu, I.W.P. Chen, H.T. Chang, C.H. Lin, C.C. Huang, Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application, ACS Sustainable Chem. Eng. 4 (2016) 3008-3016. [61]D. Du, P. Li, J. Ouyang, Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst, ACS Appl. Mater. Interfaces 7 (2015) 26952-26958. [62]B. Wang, Y. Qin, W. Tan, Y. Tao, Y. Kong, Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes, Electrochim. Acta 241 (2017) 1-9. [63]J. Qu, L. Shi, C. He, F. Gao, B. Li, Q.Z.H. Hu , G. Shao, X. Wang, J. Qiu, Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue, Carbon 66 (2014) 485-492. [64]D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.H. Yoon, Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide, Langmuir 26 ( 2010) 16096-16102. [65]G. Arunabha, L.Y. Hee, Carbon-based electrochemical capacitors, ChemSusChem 5 (2012) 480-499. [66]F.T. Johra, J.W. Lee, Woo-Gwang Jung, Facile and safe graphene preparation on solution based platform, J. Ind. and Eng. 20 (2014) 2883-2887. [67]M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants, J. Photochem. Photobiol. B 163 (2016) 216-223. [68]E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A.R. Biris, V. Saini, A.S. Biris, Large-scale graphene production by RF-cCVD method, Chem. Commun. 27 (2009) 4061-4063. [69]Y. Li, N. Zhao, C. Shi, E. Liu, C. He, Improve the supercapacity performance of MnO2‑decorated graphene by controlling the oxidization extent of graphene, J. Phys. Chem. C 116 (2012) 25226-25232. [70]Y. Ren, Q. Xu, J. Zhang, H. Yang, B. Wang, D. Yang, J. Hu, Z. Liu, Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 9689-9697. [71]A. Zolfaghari, H.R. Naderi, H.R. Mortaheb, Carbon black/manganese dioxide composites synthesized by sonochemistry method for electrochemical supercapacitors, J. Electroanal. Chem. 697 (2013) 60-67. [72]H.R. Naderia, P. Norouzia, M.R. Ganjali, Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite, Appl. Surf. Sci. 366 (2016) 552–560. [73]X. Zhang, M. He, P. He, C. Li, H. Liu, X. Zhang, Y. Ma, Ultrafine nano-network structured bacterial cellulose as reductant and bridging ligands to fabricate ultrathin K-birnessite type MnO2 nanosheets for supercapacitors, Appl. Surf. Sci. 433 (2018) 419-427. [74]H. Bin, H. Chenling, Q. Yong, Facile hydrothermal synthesis of manganese dioxide/nitrogen-doped graphene composites as electrode material for supercapacitors, J. Electrochem. Sci. 12 (2017) 11171-11180. [75] W. Xiao, Z. Wenjie, H. Yu, Y. Pu, Z. Yanhua, Template synthesis of hierarchical mesoporous δ-MnO2 hollow microspheres as electrode material for high-performance symmetric supercapacitor, Electrochim. Acta. 264 (2018) 1-11. [76] L. Me, P. Feng, S. G. C. Eugene, L. Yunbo, C. Yu, X. Junmin, Designed construction of a graphene and iron oxide freestanding electrode with enhanced flexible energy-storage performance, ACS Appl. Mater. Interfaces 8 (2016) 6972-6981. [77]H. Gao, F. Xiao, C.B. Ching, H. Duan, High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2, ACS Appl. Mater. Interfaces 4 (2012) 2801-2810. [78]M. Yang, D.S. Kim, S.B. Hong, J.W. Sim, J. Kim, S.S. Kim, B.G. Choi, MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors, Langmuir 33 (2017) 5140-5147. [79]Q. Qu, P. Zhang, B. Wang, Y. Chen, Shu Tian, Y. Wu, R. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, J. Phys. Chem. C 113 (2009) 14020-14027. [80]H. Cheng, H.M. Duon, Three dimensional manganese oxide on carbon nanotube hydrogels for asymmetric supercapacitors, RSC Adv. 6 (2016) 36954-36960. [81]A. Sliwak, G. Gryglewicz, High-voltage asymmetric supercapacitors based on carbon and manganese oxide/oxidized carbon nanofiber composite electrodes, Energy Technol. 2 (2014) 819-824. [82]T.C. Chou, R.A. Doong, C.C Hu, B. Zhang, D.S. Su, Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors, ChemSusChem 7 (2014) 841-847. [83]L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability, J. Phys. Chem. C 118 (2014) 22865-22872. [84]Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors, Nano Lett. 12 (2012) 4206-4211. [85]V. Khomenko, E.R. Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium, J. Power Sources 153 (2006) 183-190. [86]T. Brousse, P.L. Taberna , O. Crosnier, R. Dugasa, P. Guillemet, Y. Scudeller, Y. Zhoud, F. Favier, D. Belanger, P. Simon, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J Power Sources 173 (2007) 633-641.
|