跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王銘詳
研究生(外文):Ming-Hsiang Wang
論文名稱:應用零價鐵結合氧化劑(ZVI/H2O2、O2、Air)以提升化學混凝處理非離子型界面活性劑成效之研究
論文名稱(外文):Enhancement of Coagulation of Nonylphenol ethoxylate by Zero-Valent Iron with Oxidants (ZVI/H2O2, O2, Air)
指導教授:陳孝行陳孝行引用關係
口試委員:李奇旺陳奕宏
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:115
中文關鍵詞:壬基苯酚聚乙氧基醇零價鐵親水性疏水性化學混凝
外文關鍵詞:NPnEOZero valent ironhydrophilichydrophobiccoagulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般金屬表面處理業中使用化學混凝處理廢水,但是廢水中壬基苯酚聚乙氧基醇,由於本身的親水性質使得該物質廢水中的去除率相當有限,因此若要增加化學混凝效率必須增加 NP9EO 的疏水性質。
因壬基苯酚聚乙氧基醇其親水性,因此希望於化學混凝程序前將壬基苯酚聚乙氧基醇作個前處理,提高壬基苯酚聚乙氧基醇的疏水性質,因此本研究利用零價鐵(1、2、3、5g / L)結合過氧化氫(0、35、70、125、250 mg / L)以及零價鐵結合曝氣(Air、O2)產生強氧化劑氫氧自由基來破壞壬基苯酚聚乙氧基醇結構,利用氫氧自由基攻擊乙氧基醇鏈(親水基),以冀達到提升壬基苯酚聚乙氧基醇疏水特性的目的,後續並接以化學混混凝程序,利用前處理所殘留鐵離子作為混凝劑而不另外添加混凝劑。
於 ZVI / H2O2 前處理當中,於實驗條件 pH 1.5、2、3、4,零價鐵 3 g / L,過氧化氫 70 mg / L,以 pH 2 於最終反應時間 60 分鐘可以達到較佳的效果,其NP9EO 以及 TOC 去除率分別為 80.5% 與 65.2 %。在利用不同零價鐵劑量結合不同濃度過氧化氫下,其實驗結果經由軟體模擬於條件 ZVI 3 g / L - H2O2 125 mg / L 時可得到最佳化參數。於零價鐵結合曝氣部分,利用曝氣方式替代過氧化氫,曝空氣對於 NP9EO去除率 42.6 %、TOC 去除率為 28 %,而曝氧氣對於 NP9EO 去除率 47.6 %、TOC 去除率 34.7%。此外經由 XAD-8 樹脂分析結果,證實經前處理確實可將破壞 NP9EO 結構增加疏水性質。
於化學混凝部份,NP9EO 經前處理後接以化學混凝程序,利用前處理殘留鐵離子作為混凝劑,化學混凝後總NP9EO去除效果經 Surfer 軟體模擬,於前處理於 ZVI 2.5 g / L – H2O2 125 mg / L 條件下就可達到最佳化。利用 ZVI / Air、O2 作為前處理於化學混凝程序下,利用前處理殘餘鐵離子作為混凝劑,曝空氣 NP9EO 總去除率約47.7 %、TOC去除率約 28%,曝氧氣部分 NP9EO 及 TOC 去除效果分別為 55% 與 43 %。


Metal surface treatment industry employs coagulation to treat wastewater, but in wastewater NP9EO of hydrophilic property made that removal efficiency limited. In order to increase the efficiency of chemical coagulation, it is necessary to increase the NP9EO hydrophobic property.
This study used ZVI / H2O2, Air and O2 as a pretreatment before chemical coagulation, and used hydroxyl radical to destroy NP9EO hydrophilic group structures. This study included two stages of experiment. First of all, the ZVI / H2O2, Air or O2 process was used to pretreat NP9EO. Second, the pretreatment sample combined with coagulation by using pretreatment residual iron ionic.
In the ZVI / H2O2 pretreatment with different pH, NP9EO could get better removal efficiency when pH was 2(NP9EO 1000 mg / L, ZVI 5 g / L, H2O2 125 mg / L), NP9EO and TOC removal efficiency were 58.4 % and 25.2 % , respectively. Besides, the ZVI / H2O2 pretreatment result could be using surfer software to get the optimum ZVI / H2O2 dosage which was ZVI 3 g / L – H2O2 125 mg / L. 42.6 % NP9EO and 28 % TOC were removed by using ZVI /Air, nevertheless 47.6 % NP9EO and 34.7 % TOC were removed by ZVI / O2. In addition, through the XAD-8 resin analysis confirmed that pretreatment could increase the hydrophobic nature of NP9EO by destroying NP9EO structural.
NP9EO used the Fe2+ that pretreatment residual to apply the process of chemical coagulation after the pretreatment, and the pretreatment optimization was found under ZVI 2.5 g / L – H2O2 125 mg / L ,after total removal efficiency was simulated by the surfer software. Using pretreatment of ZVI / Air, O2 in the process of chemical coagulation, the total NP9EO and TOC removal efficiency were about 47.7% and 28% under aeration of oxygen.


摘要 i
Abstract iii
誌謝 v
目 錄 vi
表目錄 x
圖目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1壬基苯酚聚乙氧基醇(NPnEO) 4
2.1.1壬基苯酚聚乙氧基醇之性質及產業應用 4
2.1.2壬基苯酚聚乙氧基醇之結構 10
2.1.3壬基苯酚聚乙氧基醇之危害 14
2.1.4 各國對於環境荷爾蒙因應之對策 17
2.1.5 壬基苯酚聚乙氧基醇與壬基苯酚之毒性 21
2.1.6 壬基苯酚之內分泌干擾 24
2.2 壬基苯酚聚乙氧基醇處理技術分析 26
2.2.1生物處理法 26
2.2.2氯化消毒法 30
2.2.3高級氧化程序 30
第三章 實驗方法與設備 52
3.1研究內容 52
3.2實驗設計 52
3.3實驗步驟 55
3.4實驗材料與設備 56
3.4.1 實驗材料 56
3.4.2 其餘輔助設備 56
3.5 實驗分析方法 57
3.5.1 壬基苯酚聚乙氧基醇(NP9EO)分析法 57
3.5.2 壬基苯酚(NP)分析法 57
3.5.3 TOC分析法 58
3.5.4 二價鐵離子分析法 59
3.5.5 過氧化氫分析法 59
3.5.6 XAD 8 樹脂分析方法 59
第四章 結果與討論 60
4.1 前處理程序對於 NP9EO 降解之影響 60
4.1.1 零價鐵酸洗之影響 60
4.1.2 反應 pH 值之影響效應 65
4.1.3 零價鐵劑量之影響 70
4.1.4 過氧化氫劑量之影響 73
4.1.5 不同劑量零價鐵結合不同濃度過氧化氫之影響 75
4.1.6 零價鐵結合曝氣 84
4.2化學混凝程序對於 NP9EO降解效率之影響 86
4.2.1 化學混凝 pH 對於 NP9EO 之影響 86
4.2.2 混凝劑濃度對於 NP9EO 之影響 87
4.3 ZVI/ H2O2、Air、O2 前處理結合化學混凝降解 NP9EO 效率之影響 88
4.3.1 ZVI / H2O2 前處理殘留鐵離子混凝效應 88
4.3.2 ZVI / Air、O2 前處理結合化學混凝程序 93
4.4 ZVI/ H2O2 前處理與ZVI/ H2O2 前處結合化學混凝副產物分析 95
第五章 結論與建議 97
5.1結論 97
5.2建議 98
參考文獻 99
附錄 112


1.Di Gioia, D., Sciubba, Luigi, Bertin, Lorenzo, Barberio, Claudia, Salvadori, Laura, Frassinetti, Stefania, Fava, Fabio, Nonylphenol polyethoxylate degradation in aqueous waste by the use of batch and continuous biofilm bioreactors. Water Research, 2009. 43(12): p. 2977-2988.
2.Babaei, A.A., Mesdaghiniai, A. R., Haghighi, N. Jaafarzadeh, Nabizadeh, R., Mahvi, A. H., Modeling of nonylphenol degradation by photo-nanocatalytic process via multivariate approach. Journal of Hazardous Materials, 2011. 185(2-3): p. 1273-1279.
3.Aoki, N., M. Nishikawa, and K. Hattori, Synthesis of chitosan derivatives bearing cyclodextrin and adsorption of p-nonylphenol and bisphenol A. Carbohydrate Polymers, 2003. 52(3): p. 219-223.
4.Horikoshi, S., Watanabe, N, Onishi, H, Hidaka, H, Serpone, N., Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. Applied Catalysis B: Environmental, 2002. 37(2): p. 117-129.
5.Bergendahl, J.A. and T.P. Thies, Fenton''s oxidation of MTBE with zero-valent iron. Water Research, 2004. 38(2): p. 327-334.
6.Zhou, T., Li, Yaozhong, Ji, Jing, Wong, Fook-Sin, Lu, Xiaohua, Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: Kinetic, pathway and effect factors. Separation and Purification Technology, 2008. 62(3): p. 551-558.
7.Fu, F., Wang, Q., Tang, B., Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 2010. 174(1-3): p. 17-22.
8.Bremner, D.H., Burgess, Arthur E, Houllemare, Didier, Namkung, Kyu-Cheol, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Applied Catalysis B: Environmental, 2006. 63(1-2): p. 15-19.
9.趙承琛, 工業升級之特用化學品-界面活性劑. 1993.
10.王鳳英, 界面活性劑的原理與應用 1996.
11.張政宏, 界面活性劑概論. 1996, 台灣: 黎明書店.
12.Nielsen, E., Østergaard, G., Thorup, I., Ladefoged, O., Jelnes, J.E.,. Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates,tricresyl, phosphates and benzoic acid. 2000: Institute of food Safety and Toxicology,Danish Veterinary and Food Administration.
13.王正雄、張小萍、洪文宗、李宜樺、黃壬瑰、陳珮珊, 台灣地區擬似環境荷爾蒙物質管理及環境流佈調查. 微生物與環境荷爾蒙研討會,國科會生命推動中心主辦,台北, 2000.
14.White R, J.S., Hoare SA, Sumpter JP, ParkerMG, Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 1994. 135: p. 175–82.
15.Sol, M., Estrogenicity determination in sewage treatment plants and surface waters from the catalonian area (NE Spain). Environmental Science and Technology, 2000. 34(24): p. 5076-5083.
16.Hawrelak, M., E. Bennett, and C. Metcalfe, The environmental fate of the primary degradation products of alkylphenol ethoxylate surfactants in recycled paper sludge. Chemosphere, 1999. 39(5): p. 745-752.
17.Sol, M., M.J.L. De Alda, and M. Castillo, Estrogenicity determination in sewage treatment plants and surface waters from the catalonian area (NE Spain). Environmental Science and Technology, 2000. 34(24): p. 5076-5083.
18.Swisher, Surfactant Biodegradation. 1987: New York: Marcel Dekker.
19.Ahel, M., Determination of Nonylphenol Polyethoxylates and Their Lipophilic Metabolites in Sewage Effluents by Normal-phase High-performance Liquid Chromatography and Fluorescence Detection. 2000.
20.Ying, G.-G., B. Williams, and R. Kookana, Environmental fate of alkylphenols and alkylphenol ethoxylates--a review. Environment International, 2002. 28(3): p. 215-226.
21.Fernández, C.G. Occurrence of Nonylphenol Polyethoxylates and Polychloro-Biphenyls in Aqueous and Solid Phases along Two Pilot-Scale Wastewater Treatment Plants.
22.Weinheimer, R.M.a.P.T.V., Polyoxyethylene alkylphenols. 1998: New York. p. 39–85.
23.Coll, J.A., Final report on the safety assessment of Nonoxynols -2, -4, -8, -9, -10, -12, -14, -15,-30, -40, and -50. . 1983. p. 35–60.
24.Ahel, M. and W. Giger, Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere, 1993. 26(8): p. 1471-1478.
25.Kitis, M., C.D. Adams, and G.T. Daigger, The effects of Fenton''s reagent pretreatment on the biodegradability of nonionic surfactants. Water Research, 1999. 33(11): p. 2561-2568.
26.He, Y., Y. Cao, and Y. Liu, Initiation mechanism of ultrasonically irradiated emulsion polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2005. 43(18): p. 2617-2624.
27.Jonkers, N. and R.W.P.M. Laane, Fate modeling of nonylphenol ethoxylates and their metabolites in the Dutch Scheldt and Rhine estuaries: validation with new field data. Estuarine, Coastal and Shelf Science, 2005. 62(1-2): p. 141-160.
28.Petrovic, M., Fernández-Alba, Amadeo Rodrigez, Borrull, Francisco, Marce, Rosa Maria, Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain. Environmental Toxicology and Chemistry, 2002. 21(1): p. 37-46.
29.Lee, H.-B., Peart, Thomas E, Bennie, Donald T, Maguire, R. James, Determination of nonylphenol polyethoxylates and their carboxylic acid metabolites in sewage treatment plant sludge by supercritical carbon dioxide extraction. Journal of Chromatography A, 1997. 785(1-2): p. 385-394.
30.Heemken, O.P., Reincke, H, Stachel, B, Theobald, N., The occurrence of xenoestrogens in the Elbe river and the North Sea. Chemosphere, 2001. 45(3): p. 245-259.
31.Ferguson, P.L., C.R. Iden, and B.J. Brownawell, Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environmental Science and Technology, 2001. 35(12): p. 2428-2435.
32.Jonkers, N., De Voogt, P.,, Nonionic surfactants in marine and estuarine environments, in Analysis and Fate of Surfactants in the Aquatic Environmen, T.P. Knepper, Barcelo´ , D., De Voogt, P, Editor. 2003, Elsevier: Amsterdam. p. 719–747.
33.Argese E, M.A., Miana P, Bettiol C, Perin G, ed. Submitochondrial particle response to linear alkylbenzene sulfonates, nonylphenol polyethoxylates and their biodegradation derivatives. Environ Toxicol Chem. Vol. 13. 1994. 737–42.
34.Di Corcia, A., Costantino, A, Crescenzi, C, Marinoni, E, Samperi, R., Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environmental Science and Technology, 1998. 32(16): p. 2401-2409.
35.Jonkers, N., Knepper, T.P., De Voogt, P, Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography–electrospray tandem mass spectrometry. Environmental Science and Technology, 2001. 35: p. 335–340.
36.Inumaru, K., Murashima, Mika, Kasahara, Takashi, Yamanaka, Shoji, Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO2: a combination of molecular selective adsorption and photocatalysis. Applied Catalysis B: Environmental, 2004. 52(4): p. 275-280.
37.USEPA Testing consent order on 4-nonylphenol, branched. 1990.
38.Chiu, T.Y.P., N.; Scrimshaw, M. D.; Cartmell, E.; Lester, J. N. A, A critical review of the formation of mono and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance. Environ. Sci. Technol, 2010. 40: p. 199–238.
39.Agency., U.K.E., Draft comprehensive risk assessment report for nonylphenol. National Centre for Ecotoxicity and Hazardous Substances. 1997: London, U.K.
40.Ahel, M. and W. Giger, Aqueous solubility of alkylphenols and alkylphenol polyethoxylates. Chemosphere, 1993. 26(8): p. 1461-1470.
41.Enyeart, C.R., Polyoxyethylene alkylphenols. 1967, Marcel Dekker: New York. p. 44–85.
42.Hüls, A., Product information sheet revision — nonylphenol. 1994: Marl,Germany.
43.McLeese, D.W., V. Zitko, D.B. Sergeant, L. Burridge and C.D. Metcalfe, Lethality and accumulation of alkylphenols in aquatic fauna. Chemosphere, 1981. 10: p. 723–730.
44.Reed, H.W.B., Alkylphenols. In: Kirk-Othmer encyclopedia of chemical technology. 3rd ed. Vol. 2. 1978, New York: John Wiley and Sons.
45.Romano, R.R., Proceedings of the Seminar on Nonylphenol Ethoxylates (NPE) and Nonylphenol (NP). Current studies on nonylphenol — physical/chemical, biodegradation and aquatic effects, ed. Saltsjöbaden. 1991, Stockholm: Ingvar Bingman.
46.Thomas, M., OECD (Organisation for Economic Co-operation and Development), in SIDS (Existing Chemicals Program) initial assessment report for 6th SIAM. 1997, Environment Agency, National Centre for Ecotoxicology and Hazardous Substances: London, U.K.
47.Arnold SF, V.P., Collins BM, Klotz DM, Guillette LJ, McLachlan JA, In vitro synergistic interaction of alligator and human estrogen receptors with combinations of environmental chemicals. Environ Health Perspect, 1997. 3: p. 615-618.
48.王正雄、張小萍、李宜樺、黃任瑰、陳佩珊、洪文宗, 台灣地區擬似環境荷爾蒙物質管理及環境流佈調查. 2000.
49.USEPA, in http://www.epa.gov/scipoly/. 1996.
50.陳庭堅,許美芳,陳福安, 環境荷爾蒙規劃調查. 91: 大仁技術學院.
51.Warhust, A.M., An Environmental Assessment of Alkylphenol Ethoxylates and Alkylphenols. 1995, University of York.
52.Smyth, H.F.a.J.C.C., Toxicological studies of alkylphenol polyoxyethylene surfactants. Toxicol. Appl. Pharmacol, 1969. 14: p. 315–334.
53.Organization)., W.W.H., Environmental Health Criteria: Nonylphenol and nonylphenol ethoxylates. 1998: Geneva, Switzerland.
54.Buttar, H., S. Swierenga and T. Matula, Evaluation of the cytotoxicity and genotoxicity of the spermicides Nonoxynol-9 and Octoxynol-9. 1986. 31: p. 65–73.
55.Long, S., A. Warren and J. Little, Effect of Nonoxynol-9, a detergent with spermicidal activity, on malignant transformation in vitro. Carcinogenesis, 1982. 3: p. 553–557.
56.Jinxi, Q., W. Chengzhang, H. Qugang and D. Xiaohuei, Determination of carcinogenic potency of alkytoxynol-741 (AP-741) by rat peritoneal cell cultures. 1992. p. 399–406.
57.Williams, J.B., R.L. Blessing and P.T. Varineau, Aquatic fate and effects testing: data on alkylphenol ether carboxylates. Union Carbide Corporation, South Charleston, I.a. Central and T.P. Report, Editors. 1996, Union Carbide Corporation,.
58.Meyer, O., P.H. Andersen, E.V. Hansen and and J.C. Larsen, Teratogenicity and in vitro mutagenicity studies on Nonoxynol-9 and -30. Pharmacol. Toxicol, 1988. 62: p. 236–238.
59.Scrimshaw, M.D.L., J.N. Fate and behaviour of endocrine disrupters in sludge treatment and disposal. in IWA. 2003. London: Lewis
60.J.E. Harries, D.S., J.A. Osborne, P. Mathiessen, P. Neall and E.J. Routledge A survey of estrogenic activity in United Kingdom inland waters. Environ Toxicol Chem, 1996. 15: p. 1993–2002.
61.Michelangeli F, O.S., Champeil P, East JM, Lee AG, Mechanism of inhibition of the (Ca2+-Mg2+)-ATPase by nonylphenol, in Biochem. 1990. p. 3091–101.
62.Kirk CJ, B.L., Minican N, Carpenter H, Shaw S, Kohli N, Environmental endocrine disrupters dysregulate estrogen metabolism and Ca2+ homeostasis in fish and mammals via receptor-independent mechanisms, in Comp Biochem Physiol A-Mol Integr Physiol. 2003. p. 1–8.
63.Kudo C, W.K., Masuda T,Yonemura T, ShibuyaA, FujimotoY, Nonylphenol induces the death of neural stem cells due to activation of the caspase cascade and regulation of the cell cycle, in J Neurochem. 2004. p. 1416–23.
64.Colerangle JB, R.D., Exposure of environmental estrogenic compound nonylphenol to 20 noble rats alters cell-cycle kinetics in the mammary gland, in Endocrine. 1996. p. 115–22.
65.Roy D, C.J., Singh KP, Is exposure to environmental or industrial endocrine disrupting estrogen-like chemicals able to cause genomic instability ? Front Biosci, 1998. 3: p. 913–21.
66.Arukwe, A., Thibaut, R. E, Ingebrigtsen, K., In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquatic Toxicology, 2000. 49(4): p. 289-304.
67.Snyder, S.A., T.L. Keith, and S.L. Pierens, Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere, 2001. 44(8): p. 1697-1702.
68.Stoffel, M.H., Wahli, T, Friess, A. E, Burkhardt-Holm, P., Exposure of rainbow trout (Oncorhynchus mykiss) to nonylphenol is associated with an increased chloride cell fractional surface area. Schweizer Archiv fur Tierheilkunde, 2000. 142(5): p. 263-267.
69.Coldham NG, S.S., M. Dave, L. A. Ashfield , T. G. Potinger, C. Goodall, and M. J. Sauer, Biotransformation, tissue distribution, and persistence of 4-nonylphenol residues in juvenile rainbow trout(Oncorhynchus mykiss). Drug Metabolism and Disposition, 1998. 26: p. 347-354.
70.R White, S.J., S A Hoare, J P Sumpter and M G Parker, Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 1994. 135: p. 175-182.
71.Comber, M.H.I., T.D. Williams, and K.M. Stewart, The effects of nonylphenol on Daphnia magna. Water Research, 1993. 27(2): p. 273-276.
72.CG, N., Environmental fate and safety of nonylphenol ethoxylates. Text Chem Color, 1995. 27: p. 29–33.
73.Graff L, I.P., Cellier P, Bastide J, Cambon JP, Narbonne JF, Toxicity of chemicals to microalgae in river and in standard waters. Environ Toxicol Chem, 2003. 22: p. 1368–79.
74.Kelly SA, D.G.R., Developmental toxicity of estrogenic alkylphenols in killifish (Fundulus heteroclitus). Environ Toxicol Chem, 2000. 19: p. 2564–70.
75.Soto AM, J.H., Wray JW, Sonnenschein C, P-Nonylphenol: an estrogenic xenobiotic released from “modified” polystyrene. 1991, Environ Health Perspect. p. 167–73.
76.Kim, Y.-S., Katase, Takao, Sekine, Sayaka, Inoue, Tadashi, Variation in estrogenic activity among fractions of a commercial nonylphenol by high performance liquid chromatography. Chemosphere, 2004. 54(8): p. 1127-1134.
77.Odum, J., Lefevre, P. A, Tittensor, S, Paton, D, Routledge, E. J., The Rodent Uterotrophic Assay: Critical Protocol Features, Studies with Nonyl Phenols, and Comparison with a Yeast Estrogenicity Assay. Regulatory Toxicology and Pharmacology, 1997. 25(2): p. 176-188.
78.Lee HJ, C.S., Gong EY, Ahn RS, Lee K, Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci, 2003. 75: p. 40–6.
79.Lee PC, L.W., In vivo estrogenic action of nonylphenol in immature female rats, in Bull Environ Contam Toxicol. 1996. p. 341–8.
80.Servos, M.R., Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Quality Research Journal of Canada, 1999. 34(1): p. 123-177.
81.Jobling S, S.D., Osborne JA, Matthiessen P, Sumpter JP, Environ Toxicol Chem, Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. 15: p. 194–202.
82.Tabata A, K.S., Ohnishi Y, Ishikawa H, Miyamoto N, Itoh M, Estrogenic influences of estradiol-17 beta, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations. Water Sci Technol, 2001. 43: p. 109–16.
83.Kinnberg K, K.B., Bjerregaard P, Jespersen A, Effects of nonylphenol and 17 beta-estradiol on vitellogenin synthesis and testis morphology in male platyfish Xiphophorus maculatus. 2000. p. 171–81.
84.Lee, P.C., Disruption of male reproductive tract development by administration of the xenoestrogen, nonylphenol, to male newborn rats. Endocrine, 1998. 9(1): p. 105-111.
85.Zhang, J., Yang, Min, Zhang, Yu, Chen, Meixue, Biotransformation of nonylphenol ethoxylates during sewage treatment under anaerobic and aerobic conditions. Journal of Environmental Sciences, 2008. 20(2): p. 135-141.
86.K., Y., Biodegradation and fish toxicity of nonionic surfactants. JAm Oil Chem Soc, 1986. 63: p. 1590–6.
87.Mann, R.M. and M.R. Boddy, Biodegradation of a nonylphenol ethoxylate by the autochthonous microflora in lake water with observations on the influence of light. Chemosphere, 2000. 41(9): p. 1361-1369.
88.Bursch, W., M. Fuerhacker, M. Gemeiner, B. Grillitsch, A. Jungbauer, N. Kreuzinger, E. Moesti, S. Scharf, E. Schmid, S. Skutan, and I, Walter,"Endocrine disrupters in the aquatic environemtn: The Austrian approach - ARCEM." Water Science and Technology, 2004. 50(5): p. 293-300.
91.焦自強, 應用範圍逐漸擴大的微過濾技術. 化工技術,第3卷,第5期, 1995: p. 151-155.
92.邵剛, 反滲透. 北京:冶金工業出版社, 2000.
93.莊珮綺, 兩段式奈米薄膜系統純化/濃縮電鍍製程含鉻廢液及質量傳輸之研究. 碩士論文, 2006. 國立臺北科技大學.
94.Saien, J., Ojaghloo, Z., Soleymani, A. R., Rasoulifard, M. H., Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate. Chemical Engineering Journal, 2011. 167(1): p. 172-182.
95.De La Fuente, L., Acosta, T, Babay, P, Curutchet, G, Candal, R, Litter, M. I., Degradation of nonylphenol ethoxylate-9 (NPE-9) by photochemical advanced oxidation technologies. Industrial and Engineering Chemistry Research, 2010. 49(15): p. 6909-6915.
96.K. Vinodgopal, M.A., and Franz Grieser, Sonochemical Degradation of a Polydisperse Nonylphenol Ethoxylate in Aqueous Solution. J. Phys. Chem, 2001. 105: p. 3338-3342.
97.Rice, R.G., Application of Ozone for Industrial Wastewater Treatment-A Review. Ozone Science & Engineering, 1997. 18: p. 477-515.
98.Staehelin, J., Bühler, R.E., and Hoigne, J, Ozone decomposition in water studied by pulse radiolysis, 2. OH and HO4 as chain intermediates. J. Phys. Chem, 1984. 88: p. 5999.
99.范姜仁茂, 預臭氧程序提升綜合性工業廢水生物可分解性之研究, in 環境工程研究所. 90, 國立中央大學.
100.Lenz, K., V. Beck, and M. Fuerhacker, Behaviour of bisphenol A (BPA), 4-nonylphenol (4-NP) and 4-nonylphenol ethoxylates (4-NP1EO, 4-NP2EO) in oxidative water treatment processes. Water Science and Technology, 2004. 50(5): p. 141-147.
101.Stumm, W., and Morgan, J. J., “The Solid-Solution Interface”, in Aquatic Chemistry. 1981, John Wiley & Sons: New York. p. 612-614.
102.Randtke, S.J., Organic Contaminant Removal by Coagulation and Related Process Combinations. AWWA, 1988.
103.O’Melia, C.R., “Coagulation and Flocculation”, Physicochemistry Processes for Water Quality Control, J. W. J. Weber, Editor. 1972, John Wiley & Sons: New York. p. 62-85.
104.Vernon L. Snoeyink, D., Jenkins, Water Chemistry, ed. 開發圖書有限公司. 1982, 台北市.
105.Mantha, R., A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater. Environmental Science and Technology, 2001. 35(15): p. 3231-3236.
106.Committee Report, “Organics Removal by Coagulation:A Review and Research Needs”. Jour. AWWA, 1979. 71: p. 588-603.
107.Tchobanoglous, G., F.L. Burton, and H.D. Stensel, Wastewater engineering: treatment and reuse. 4th ed. 2003, New York, USA: McGraw-Hill, .
108.Matheson, L.J. and P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology, 1994. 28(12): p. 2045-2053.
109.Choe, S., Y.Y. Chang, and K.Y. Hwang, Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 2000. 41(8): p. 1307-1311.
110.Sung Hee Joo, A.J.F., and T. David Waite, Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environmental Science and Technology, 2004. 38(7).
111.Noradoun, C.E. and I.F. Cheng, EDTA Degradation Induced by Oxygen Activation in a Zerovalent Iron/Air/Water System. Environmental Science & Technology, 2005. 39(18): p. 7158-7163.
112.Lee, C. and D.L. Sedlak, Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environmental Science and Technology, 2008. 42(22): p. 8528-8533.
113.Ghauch, A., Baydoun, Habib, Dermesropian, Peter, Degradation of aqueous carbamazepine in ultrasonic/Fe0/H2O2 systems. Chemical Engineering Journal, 2011. In Press, Corrected Proof.
114.蘇宏毅、洪錫勳, UV/H2O2技術在化工業上之應用. 工業污染防治, 1995. 14.
115.Yiqi, Y., D.T. Wyatt, and M. Bahorsky, Decolorization of dyes using UV/H2O2 photochemical oxidation. Textile Chemist and Colorist, 1998. 30(4): p. 27-35.
116.Siegrist, R.L., Urynowicz, M. A., West, O. R., Crimi, M. L. and Lowe, K. S., Principle and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press, 2001.
117.Pignatello, J.J., Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science and Technology, 1992. 26(5): p. 944-951.
118.Lunar, L., Sicilia, Dolores, Rubio, Soledad, Pez-Bendito, Dolores, Nickel, Ulrich, Degradation of photographic developers by Fenton''s reagent: condition optimization and kinetics for metol oxidation. Water Research, 2000. 34(6): p. 1791-1802.
119.Chen, J.L., S.R. Al-Abed, and J.A. Ryan, Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials, 2001. 83(3): p. 243-254.
120.Kallel, M., C. Belaid, and R. Boussahel, Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. Journal of Hazardous Materials, 2009. 163(2-3): p. 550-554.
121.Shu, H.Y. and M.C. Chang, Development of a rate expression for predicting decolorization of C.I. Acid Black 1 in a UV/H2O2 process. Dyes and Pigments, 2006. 70(1): p. 31-37.
122.Chang, M.C., H.Y. Shu, and H.H. Yu, An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater. Journal of Hazardous Materials, 2006. 138(3): p. 574-581.
123.Liao, C.-H., S.-F. Kang, and Y.-W. Hsu, Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research, 2003. 37(17): p. 4109-4118.
124.Ikehata, K. and M.G. El-Din, Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review. Ozone: Science and Engineering, 2004. 26(4): p. 327-343.
125.Lai, P., Zhao, H. z, Wang, C, Ni, J. r, Advanced treatment of coking wastewater by coagulation and zero-valent iron processes. Journal of Hazardous Materials, 2007. 147(1-2): p. 232-239.
126.Caygill, H., The fate of the pariah: Arendt and Kafka''s "Nature Theatre of Oklahama". College Literature, 2010. 38(1): p. 1-14+iv.
127.Jin, X., Jiang, G, Huang, G, Liu, J, Zhou, Q., Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring. Chemosphere, 2004. 56(11): p. 1113-1119.
128.Sellers, R.M., Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. The analyst., 1980. 105: p. 950-954.
129.Agrawal, A. and P.G. Tratnyek, Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal. Environmental Science & Technology, 1995. 30(1): p. 153-160.
130.EJ, K., ed. The active iron electrode: iron dissolution and hydrogen evolution reactions in acidic sulfate solutions. 2 ed. Vol. 112. 1965. 124–31.
131.Cao, J., Wei, Liping, Huang, Qingguo, Wang, Liansheng, Han, Shuokui, Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere, 1999. 38(3): p. 565-571.
132.Tekin, H., Bilkay, Okan, Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, 2006. 136(2): p. 258-265.
133.Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B. and . Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton''s peroxidation. Journal of Hazardous Materials, 2005. 123(1-3): p. 187-195.
134.F.J. Rivas, F.J.B., O. Gimeno and J. Frades, Treatment of olive mill wastewater by Fenton''s reagent. Food Chem, 2001. 49: p. 1873–1880.
135.Kuo, W.G., Decolorizing dye wastewater with Fenton''s reagent. Water Research, 1992. 26(7): p. 881-886.
136.Mielczarski, J.A., G.M. Atenas, and E. Mielczarski, Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions. Applied Catalysis B: Environmental, 2005. 56(4): p. 289-303.
137.Walling, C., Fenton’s reagent revisited, in Chem. Res. 8. 1975.
138.Neyens, E. and J. Baeyens, A review of classic Fenton''s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 2003. 98(1-3): p. 33-50.
139.Abbasi, M. and N.R. Asl, Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. Journal of Hazardous Materials, 2008. 153(3): p. 942-947.
140.TenEyck, M. and T. Markee, Toxicity of Nonylphenol, Nonylphenol Monoethoxylate, and Nonylphenol Diethoxylate and Mixtures of these Compounds to Pimephales promelas (Fathead Minnow) and Ceriodaphnia dubia. Archives of Environmental Contamination and Toxicology, 2007. 53(4): p. 599-606.
141.Wang, K.-S., Lin, Chiou-Liang, Wei, Ming-Chi, Liang, Hsiu-Hao, Li, Heng-Ching, Chang, Chih-Hua, Fang, Yung-Tai, Chang, Shih-Hsien, Effects of dissolved oxygen on dye removal by zero-valent iron. Journal of Hazardous Materials, 2010. 182(1-3): p. 886-895.
142.Johnson, P.N.a.A., A, Ferric Chloride and Alum as Single and Dual Coagulants, in AWWA. 1982. p. 232-239.
143.Adin, A., Y. Soffer, and R. Ben Aim, Effluent pretreatment by iron coagulation applying various dose-pH combinations for optimum particle separation. Water Science and Technology, 1998. 38(6): p. 27-34.
144.章裕民. 環境工程化學. 1995: 新文京開發.
145.Ciorba, G.A.R., C.Vlaicu, I.Masu, S., Removal of nonylphenol ethoxylates by electrochemically-generated coagulants. Journal of Applied Electrochemistry, 2002. 32(5): p. 561-567.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊