1. 卜小蝶,1998。淺析個人化服務技術的發展趨勢對圖書館的影響,國立成功大學圖書館館刊,第二卷。2. 吳安琪,2001。利用資料探勘的技術及統計的方法增強圖書館的經營與服務,國立交通大學資訊科學研究所未出版碩士論文。3. 洪志淵,2001。圖書流通記錄之一般化相關規則找尋之研究,國立中山大學資訊管理研究所未出版碩士論文。4. 張苑菁,2001。以模糊理論建構之圖書推薦系統,淡江大學資訊工程研究所未出版碩士論文。
5. 湯春枝,2002。從個人化服務行銷的理念談交通大學個人化數位圖書資訊服務(PIE@NCTU)系統,國立成功大學圖書館館刊,第九卷。6. 陳可欣,2001。在動態交易資料庫中探勘線上關聯法則之設計與分析,臺南師範學院資訊教育研究所未出版碩士論文。7. 陳慶瑄,2000。學習社群對電子圖書館個人化服務之影響,國立中正大學資訊管理研究所未出版碩士論文。8. 辜曼蓉,1999。讀者資訊尋求行為與以讀者為中心的圖書館行銷,書府,第二十卷:81-111。9. 孫冠華,2003。應用資料探勘技術於數位圖書館之個人化服務及管理,南華大學資訊管理學研究所未出版碩士論文。
10. 蘇家輝,2002。線上多維度關聯規則採掘系統之架構,義守大學資訊工程所未出版碩士論文。11. 吳信樺,2012。利用興趣加權關聯規則發掘讀者適性化書籍推薦之研究,南台科技大學資訊管理研究所碩士學位論文。12. Agrawal, R. and Srikant, R., 1994. Fast Algorithms for Mining Association Rules in Large Database, Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile.
13. Agrawal, R., Imielinski, T. and Swami, A., 1993. Mining Association Rules between Sets of Items in Very Large Database, Proceedings of the ACM SIGMOD Conference on Management of Data, Washington, D.C., United States.
14. Ayan, N. F., Tansel, A. U. and Arkun, E., 1999. An Efficient Algorithm to Update Large Itemsets with Early Pruning, Proceedings of 1999 International Conference on Knowledge Discovery and Data Mining.
15. Berry, M. J. A. and Linoff, G. S., 2004. Data Mining Techniques for Marketing, Sales, and Customer Support, 2nd Ed., New York: John Wiley, 2004.
16. Beil, F., Ester, M. and Xu, X., “Frequent Term-Based Text Clustering.” In Proceedings of KDD, pp.436-442, 2002.
17. Chen, M. S., Han, J. and Yu, P. S., 1996. Data Mining: An Overview from a Database Perspective, IEEE Transactions on Knowledge and Data Engineering, 8(6), 866-883.
18. Cheung, D.W., Han, J., Ng, V. and Wang, C.Y., 1006. Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique, Proceedings of International Conference on Data Engineering.
19. Coenen, F., Leng, P. and Ahmed, S., 2004. Data Structure for Association Rule Mining-T-trees and P-trees, IEEE Transactions on Knowledge and Data Engineering, 16(6), 774-778.
20. D.W. Cheung, J. Han, V. Ng, and C.Y. Wang,“Maintenance of Discovered Association Rules in Large Database: An Incremental Updating Technique”, Proc. Int’l Conf. Data Eng., 1996.
21. Fung, B. C. M., Wang, K. and Ester, M., “Herarchical Document Clustering Using Frequent Itemsets,” In SIAM Int. Conf. Data Mining, 2003.
22. Han, J. and Kamber, M., 2006. Data Mining: Concepts and Techniques, 2nd Ed., Morgan Kaufmann.
23. Han, J., Pei, J. and Yin, Y., 2000. Mining Frequent Patterns without Candidate Generation, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data Table of Contents, Dallas, Texas, United States.
24. http://mylibrary.e-lib.nctu.edu.tw/
25. Li, Z. C., He, P. L. and Lei, M., 2005. A High Efficient AprioriTid Algorithm for Mining Association Rule, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China.
26. Liu, P. Q., Li, Z. Z. and Zhao, Y. L., 2004. Effective Algorithm of Mining Frequent Itemsets for Association Rules, Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China.
27. Ou, J., Lin, S. and Li, J., 2001. The Personalized Index Service System in Digital Library, Proceedings of the Third International Symposium on Cooperative Database Systems for Advanced Applications, Beijing, China.
28. Park, J. S., Chen, M. S. and Yu, P. S., 1997. Using a Hash-Based Method with Transaction Trimming for Mining Association Rules, IEEE Transactions on Knowledge and Data Engineering, 9(5), 813-825.
29. Srikant, R. and Agrawal, R., 1995. Mining Generalized Association Rules, Proceedings of the 21th International Conference on Very Large Data Bases, Zurich,Switzerland.
30. Tsay, Y. J. and Chiang, J. Y., 2005. CBAR: An Efficient Method for Mining Association Rules, Knowledge-Based Systems, 18, 99-105.